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MA2501 Numeriske Metoder
Olivier Verdier

Training Assignment 8

2012-03-08
This assignment has 4 tasks.
Exercise 1. Consider the matrix
0 1 -1 3
1 -2 2 4
A= -2 4 =2 2
-1 6 -9 5

1.a) Change the order of the rows to obtain a new matrix A’ such that
A'=LU

with L lower triangular with ones on the diagonal, U upper triangular,
and the coefficients in the lower triangular matrix L are lower than or
equal to one.

The procedure to achieve that is to perform a Gauss elimination with
partial pivoting. Which rows are actually pivoted will give the final per-
mutation. The first row is number three, so it is placed first. After one
round of Gauss elimination, we obtain the submatrix

1 -1 3
0 1 5
4 -8 4

The multipliers are (0., —0.5,0.5). The next biggest row is now the last
one, so we place it first, and obtain for the next round the mulltipliers
(1/4,0), and the matrix

1 2

b
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Both pivot have the same value, so we may keep that order and obtain
for the final round of the elimination the multiplier 1 and the final matrix
with one element 3.

This means that by reordering the rows in the order (3,4,1,2), we ob-
tain a LU decomposition as desired. For example, the first multipliers
were found to be (0,—1/2,1/2), but after permutation that would be
(1/2,0,—1/2) because the row number four is now placed first. Reading
the multipliers in that way, we obtain that

1 0 0 0
I_ 1/2 1 0 0
a 0 1/4 1 0
-1/2 0 1 1
The matrix U is similarly
-2 4 -2 2
0 4 -8 4
0 0 1 2
0o 0 0 3
and the matrix A’ is
-2 4 =2 2
, _|-1 6 =9 5
A= 0 1 -1 3
1 -2 2 4

1.b) Find a permutation matrix P such that
A= PA,
so that we obtain the final decomposition A = PLU.

The permutation corresponding to the row permutation (3,4,1,2) is

00 1 0
00 01
P_IOOO
01 0 0

One can check that A = PA’.

1.c) Use the Tu function in Python or Matlab on the matrix A. Do you
obtain the same result?
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1.d) Use your decomposition PLU to solve the problem
Az =0

where

b= (1, —1,6, —1)
Notice that solving Az = b is equivalent to PA’x = b, and if we denote
b = P~1b, we just have to solve
A/(L_/ — b/
We apply the inverse permutation to obtain ¥’ = (6,—1,1,—1). Now we
solve LUx' =¥/, first by solving Ly = V', we obtain
Yy = (65 _47 27 0)

Now we solve Uz = y and obtain

z=(1,3,2,0)
Exercise 2. Consider the problem
Ar =10
where
6 -1 -1
A=|-1 9 =2 b=(4 6 5).
-2 -1 8

Compute the first two steps of the Jacobi and Gauss-Seidel methods for
that problem (either by hand or with a computer), with the initial value
xo = (0,0,0).

Exercise 3. Suppose that for a matrix 7" we have

max ||Tz|| < 1.
ll=ll=1

Show that the fixed point iteration method z,,; = Tx, + c is convergent
(for any fixed vector ¢ and any initial value xg).

Let us denote the fixed point (i.e., the solution of the problem) by z. The
error at the step n is then F, = x,, — . We obtain

Eyp1=xp1—x=Tz,+c— (Te+c¢)=T(x,, —z)=TE,

Now we have

IT(E)Il = 1 EallIT(z0)
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with z, = Hg—n” Notice that [|z,| = 1, so ||T(zn)|| < max), =1 [|T(z)]| < 1.
So, if we define C':= max| .| [|T(2)||, we have

HE7L+1H < CHEnH

so by induction we obtain || E,| < C™||Ey||. As a result, since C' < 1, we get
that F, goes to zero, which means that x, converges towards x.

Exercise 4. We want to solve numerically the problem

d?u n )
R u =
dz?

on the interval [0, 1]. After discretization with N points in the interval [a, b],
the problem is reduced to the linear problem

ANZL' = bN.

The matrix Ay has size N x N and has 2N2 + 1 on the diagonal, and —N?
on the upper and lower diagonal:

N2 4+1 —N?
A2
Ay = N
.. _N2
—N?2 2N?2+41

4.a) Write down one step of the Jacobi and Gauss-Seidel methods.

Let us introduce the notation

1
=Ny
For the Jacobi method we have:
o = dn (N?2h + by)
23" = dn (N? (2 + 25) + bo)
ay Tt = dn (N (2 + o) + bs)

ey = dy (N2 _y +by)
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For Gauss Seidel, it is very similar:
.TJ;H_l = dN(Nzl’g + b1>
2t = dn (N (@] + 25) + bo)
it = dy (N (23T 4 27) + b3)

2 = dw (N2 + by)

4.b) Write down the relation between the error at step n + 1 as a function
of the error at step n.

The error at step n+1is E"t! = "+ —z where is z is the exact solution.
The Jacobi method may be written as

" = —D YL+ U)(z" +b)
so the exact solution x verifies
r=-D"YL+U)(z+b).
We thus obtain that
E" = _D(L4U)(a" +b) — (-D"YL+U)(z+b)) = -D Y L+U)E"

4.c) Show directly that the Jacobi method converge. What happens when
N becomes very large?

For the error vector E™ we have
EPt = dyN2EY
E}tt = dyN?*(E} + EY)
Ey*tt = dyN*(EY + EY)

Byt =dyN?ER_,

so we have
2N?

B < —
| k‘*2N2+1

max ||
J
which implies
2N?
max |[E" T < ———— max |E?
Since 22N7]§j-1 is strictly lower than one, it means that max; |E'| converges
to zero, so the error goes to zero. When N gets bigger, however, the

2 .. .
constant % approaches one, so the Jacobi iteration converges more

and more slowly as /N increases.



