MA2501 Numeriske Metoder
Olivier Verdier

Training Assignment 10

2012-03-22
This assignment has 4 tasks.

Exercise 1. Suppose that we construct a quadrature formula (with nodes c_{i} and weights w_{i}) The corresponding integration formula is thus

$$
I_{h}(f)=\sum_{k=0}^{N-1} h \sum_{i=1}^{s} w_{i} f\left(a_{k}+c_{i} h\right),
$$

where $a_{0}=a, a_{N}=b$, and $h=(b-a) / N$. Suppose that that the quadrature formula does not integrate constants exactly, i.e.,

$$
\sum_{i=1}^{s} w_{i} \neq 1
$$

Show that the integration formula does not converge to the integral of f, i.e., in general

$$
\lim _{h \rightarrow 0} I_{h}(f) \neq \int_{a}^{b} f(x) \mathrm{d} x
$$

Is that in agreement with the order formula derived in the lecture?
Define

$$
C^{\prime}:=\sum_{i=1}^{s} w_{i} .
$$

Choose the function $f=1$, constant on $[a, b]$. Then

$$
\int_{a}^{b} f(x) \mathrm{d} x=b-a
$$

but the integration formula gives

$$
I_{h}(1)=\sum_{k=0}^{N-1} h \sum_{i=1}^{s} w_{i}=C^{\prime} \sum_{k=0}^{N-1}=C^{\prime}(b-a) \neq b-a
$$

Exercise 2. 2.a) Recall what the Vandermonde matrix is and what it was used for
2.b) Choose quadrature nodes c_{1}, \ldots, c_{s} in the interval $[0,1]$. The corresponding weights are chosen such that the quadrature is exact for polynomials of degree $s-1$. Show that the vector w containing the corresponding weights, i.e., $w=\left(w_{1}, \ldots, w_{s}\right)$, is the solution of the linear system

$$
V^{\top} w=b,
$$

where the vector b is

$$
b=(1,1 / 2, \ldots, 1 / s)
$$

and V is the Vandermonde matrix for the points c_{1}, \ldots, c_{s}.
Each condition, for $k=0, \ldots, s-1$ reads

$$
\sum_{i=1}^{s} c_{i}^{k} w_{k}=\int_{0}^{1} x^{k} \mathrm{~d} x=\frac{1}{k+1}
$$

Exercise 3. 3.a) Compute the first three Legendre polynomials p_{0}, p_{1} and p_{2}, by orthogonalising the polynomials $1, x, x^{2}$ with respect to the scalar product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) \mathrm{d} x
$$

Starting with $\tilde{p}_{0}(x)=1$, we only have to normalize it:

$$
p_{0}=1 / 2
$$

Now

$$
\tilde{p}_{1}(x)=a+x
$$

By writing $\left\langle\tilde{p}_{1}, p_{0}\right\rangle=0$ one obtains $a=0$. The normalisation condition is given by

$$
\left\langle\tilde{p_{1}}, \tilde{p_{1}}\right\rangle=\int_{-1}^{1} x^{2}=1=\frac{2}{3}
$$

So we take

$$
p_{1}(x)=\sqrt{\frac{3}{2}} x
$$

The next polynomial would be

$$
\tilde{p}_{2}(x)=a+b x+x^{2}
$$

The orthogonal condition $\left\langle\tilde{p}_{2}, p_{0}\right\rangle=0$ becomes

$$
a+1 / 3=0
$$

and the orthogonal condition $\left\langle\tilde{p}_{2}, p_{1}\right\rangle=0$ yields

$$
b=0
$$

We deduce that

$$
\tilde{p}_{2}(x)=-\frac{1}{3}+x^{2}
$$

We compute

$$
\begin{gathered}
\left\langle\tilde{p}_{2}, \tilde{p}_{2}\right\rangle=2\left(\frac{1}{9}-\frac{2}{9}+\frac{1}{5}\right)=\frac{8}{45} \\
p_{2}(x)=\sqrt{\frac{45}{8}}\left(-\frac{1}{3}+x^{2}\right)
\end{gathered}
$$

3.b) Compute the roots of the polynomial p_{2}. Compute the weights of the corresponding formula (hint: apply the formula to the polynomial 1 and x that are integrated exactly)

The roots of p_{2} are given by

$$
r= \pm \frac{1}{\sqrt{3}}
$$

The corresponding integration formula is

$$
I(f)=w_{1} f(-1 / \sqrt{3})+w_{2} f(1 / \sqrt{3})
$$

We now use the fact that I integrates exactly the polynomials 1 and x between -1 and 1 .

We thus know that $I(1)=\int_{-1}^{1} 1 \mathrm{~d} x=2$, which leads to

$$
I(1)=w_{1}+w_{2}=2
$$

We know that $I(x)=\int_{-1}^{1} x \mathrm{~d} x=0$, so

$$
I(x)=w_{1} \frac{-1}{\sqrt{3}}+w_{2} \frac{1}{\sqrt{3}}=0
$$

from which we deduce that $w_{1}=w_{2}$. The weights are thus $w_{1}=w_{2}=1$ and the integration formula is thus

$$
I(f)=f(-1 / \sqrt{3})+f(1 / \sqrt{3})
$$

3.c) Check that this integration formula integrates exactly polynomials of degree lower than or equal to 3 , but not 4 .
3.d) What is the order of the corresponding integration formula?

We already know that the formula integrates exactly polynomials of degree ≤ 1, so we only need to check the claim for x^{2} and x^{3}.

$$
I\left(x^{2}\right)=1 / 3+1 / 3=2 / 3=\int_{-1}^{1} x^{2}
$$

so x^{2} is integrated exactly. For the polynomial x^{3} we have $I\left(x^{3}\right)=0$ by symmetry of the coefficients, and we also have $\int_{-1}^{1} x^{3}=0$, so x^{3} is indeed integrated exactly.

Exercise 4. There is a recursion relation between the Legendre polynomials, the goal is to find it out.
4.a) Show that the polynomial $x p_{k}$ is orthogonal to all the polynomials of degree less than or equal to $k-2$.
4.b) Expand $x p_{k}$ in the basis p_{0}, \ldots, p_{k+1} to find the recurrence relation

Suppose that the polynomials are orthogonal with respect to the scalar product

$$
\langle f, g\rangle=\int_{I} f g
$$

where I is a given interval (for instance $[0,1]$). We have

$$
A=\left\langle x p_{k}, p_{j}\right\rangle=\int_{I} x p_{k} p_{j}=\int_{I} p_{k}\left(x p_{j}\right)
$$

Now notice that the degree of $x p_{j}$ is $j+1$, so if $j \leq k-2$, the degree of $x p_{j}$ is lower or equal than $k-1$, so the quantity A is zero by orthogonality of p_{k} with all the polynomials of lower degree.

To see the recurrence relation, we may expand the polynomial $x p_{k}$ on the orthogonal basis $p_{0}, p_{1}, \ldots, p_{k+1}$ from which we obtain

$$
x p_{k}=\left\langle x p_{k}, p_{k+1}\right\rangle p_{k+1}+\left\langle x p_{k}, p_{k}\right\rangle p_{k}+\left\langle x p_{k}, p_{k-1}\right\rangle p_{k-1}
$$

Observe that $\left\langle x p_{k}, p_{k+1}\right\rangle \neq 0$, so the recursion relation takes the form

$$
p_{k+1}=\alpha_{k} x p_{k}+\beta_{k} p_{k}+\gamma_{k} p_{k-1}
$$

