Training Assignment 11

2012-03-29

The purpose of those exercises is to become familiar with the discrete Fourier transform and its corresponding algorithm, the fast Fourier transform.

Some useful formulae and definitions:

$$
\omega_{N}:=\mathrm{e}^{\mathrm{i} \frac{\pi}{N}}
$$

The Fourier matrix of size N is defined as

$$
F_{N}=\left[\omega_{N}^{i j}\right]_{i, j=0, \ldots, N-1}
$$

The discrete Fourier transform of $z=\left(z_{0}, \ldots, z_{N-1}\right)$ is defined by

$$
y_{k}=\sum_{j=0}^{N-1} z_{k} \omega_{N}^{k j},
$$

so in matrix vector notation, this is simply

$$
y=F_{N} z .
$$

This assignment has 5 tasks.
Exercise 1. 1.a) Compute ω_{2}, ω_{4} and ω_{8}.

$$
\begin{gathered}
\omega_{2}=e^{\mathrm{i} \frac{2 \pi}{2}}=\mathrm{e}^{\mathrm{i} \pi}=-1 \\
\omega_{4}=\mathrm{e}^{\mathrm{i} \frac{2 \pi}{4}}=\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}=\mathrm{i} \\
\omega_{8}=\mathrm{e}^{\mathrm{i} \frac{2 \pi}{8}}=\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}
\end{gathered}
$$

1.b) Compute $\omega_{8}^{8}, \omega_{8}^{9}$, and more generally, ω_{N}^{N+1}.

$$
\begin{gathered}
\omega_{8}^{8}=\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{8}}\right)^{8}=\mathrm{e}^{\mathrm{i} 2 \pi}=1 \\
\left(\omega_{8}\right)^{9}=\left(\omega_{8}^{8}\right) \omega_{8}=\omega_{8} \\
\omega_{N}^{N+1}=\left(\omega_{N}^{N}\right) \omega_{N}=\omega_{N}
\end{gathered}
$$

The last equality is due to

$$
\omega_{N}^{N}=\mathrm{e}^{\mathrm{i} \frac{2 \pi}{N} N}=\mathrm{e}^{\mathrm{i} 2 \pi}=1
$$

1.c) Compute $\omega_{2 n}^{n}$

$$
\omega_{2 n}^{n}=\mathrm{e}^{\mathrm{i} \frac{2 \pi n}{2 n}}=\mathrm{e}^{\mathrm{i} \pi}=-1
$$

Exercise 2. 2.a) Write down the matrices F_{2} and F_{4}.

$$
F_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

To compute F_{4} we first notice that $\omega_{4}=\mathrm{i}$. Now, by definition

$$
F_{4}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & \mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\
1 & \mathrm{i}^{2} & \mathrm{i}^{4} & \mathrm{i}^{6} \\
1 & \mathrm{i}^{3} & \mathrm{i}^{6} & \mathrm{i}^{9}
\end{array}\right]
$$

and by using that $\mathrm{i}^{2}=-1, \mathrm{i}^{3}=-\mathrm{i}$ and $\mathrm{i}^{4}=1$, we obtain

$$
F_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \mathrm{i} & -1 & -\mathrm{i} \\
1 & -1 & 1 & -1 \\
1 & -\mathrm{i} & -1 & \mathrm{i}
\end{array}\right]
$$

2.b) Compute the discrete Fourier transform of

$$
z=(1,-1,1,-1) .
$$

What do you notice? What is the explanation?
The result is simply

$$
(0,0,4,0)
$$

It reflects the fact that the matrices F_{N} are orthogonal (in the complex sense). Now since z was the column number three of that matrix, it means that $F_{N} z$ must be zero for all the entries but the third one.
2.c) Create new two by two submatrices from F_{4} by following the following prescriptions:
A_{00} : First two rows and even columns
A_{10} : First two rows and odd columns
A_{10} : Last two rows and even columns
A_{11} : Last two rows and odd columns
Express those submatrices from F_{2} and from the matrix Ω_{2} defined as

$$
\Omega_{2}:=\left[\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right]
$$

We obtain the matrices

$$
\begin{aligned}
A_{00} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
A_{10} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
A_{01} & =\left[\begin{array}{cc}
1 & 1 \\
\mathrm{i} & -\mathrm{i}
\end{array}\right] \\
A_{11} & =\left[\begin{array}{cc}
-1 & -1 \\
-\mathrm{i} & \mathrm{i}
\end{array}\right]
\end{aligned}
$$

It is clear that $A_{0}=F_{2}$ and that $A_{1}=F_{2}$. We also check that $A_{2}=\Omega_{2} F_{2}$ and $A_{3}=-\Omega_{2} F_{2}$.

Exercise 3. Suppose we have a periodic function $f(x)$ which we want to approximate as a sum

$$
f(\theta)=\sum_{k=0}^{N-1} a_{k} \cos \left(\frac{2 \pi}{N} k \theta\right)
$$

How would you use the discrete Fourier transform for that?
Exercise 4. Recall the fast Fourier transform formula, if

$$
y=F_{2 n} z
$$

then

$$
\begin{equation*}
y_{j}=\sum_{k=0}^{n-1}\left(z^{\prime \prime}\right)_{k} \omega_{n}^{k j}+\omega_{2 n}^{j} \sum_{k=0}^{n-1}\left(z^{\prime}\right)_{k} \omega_{n}^{k j} \tag{1}
\end{equation*}
$$

where $z^{\prime \prime}$ is composed of the even components of z, and z^{\prime} is composed of the odd components of z, that is

$$
\left(z^{\prime \prime}\right)_{j}:=z_{2 j}, \quad\left(z^{\prime}\right)_{j}:=z_{2 j+1}
$$

4.a) Write z^{\prime} and $z^{\prime \prime}$ for a vector $z=(7,6,5,4,3,2,1,0)$.

The vector $z^{\prime \prime}$ is composed of the even components of z, starting at zero, so we have

$$
z^{\prime \prime}=\left(z_{0}, z_{2}, z_{4}, z_{6}\right)
$$

which is just

$$
z^{\prime \prime}=(7,5,3,1)
$$

in that case. Similarly, the vector z^{\prime} is construct as

$$
z^{\prime}=\left(z_{1}, z_{3}, z_{5}, z_{7}\right)
$$

which gives

$$
z^{\prime}=(6,4,2,0)
$$

in that case.
4.b) Compute the formula (1) for $n=2$. Make sure to group together the values $z_{0}^{\prime \prime}+z_{1}^{\prime \prime}, z_{0}^{\prime \prime}-z_{1}^{\prime \prime}$ and $z_{0}^{\prime}+z_{1}^{\prime}, z_{0}^{\prime}-z_{1}^{\prime}$.

In the case $n=2$ we obtain after some simplification

$$
\begin{aligned}
& y_{0}=z_{0}^{\prime \prime}+z_{1}^{\prime \prime}+z_{0}^{\prime}+z_{0}^{\prime} \\
& y_{1}=z_{0}^{\prime \prime}-z_{1}^{\prime \prime}+\mathrm{i}\left(z_{0}^{\prime}-z_{1}^{\prime}\right) \\
& y_{2}=z_{0}^{\prime \prime}+z_{1}^{\prime \prime}-\left(z_{0}^{\prime}+z_{1}^{\prime}\right) \\
& y_{3}=z_{0}^{\prime \prime}-z_{1}^{\prime \prime}-\mathrm{i}\left(z_{0}^{\prime}-z_{1}^{\prime}\right)
\end{aligned}
$$

One sees in those equations that one can first compute $z_{0}^{\prime \prime}+z_{1}^{\prime \prime}, z_{0}^{\prime \prime}-z_{1}^{\prime \prime}$ and $z_{0}^{\prime}+z_{1}^{\prime}, z_{0}^{\prime}-z_{1}^{\prime}$ first. Note that these are nothing else than the components of the "coarser" Fourier transform, namely $F_{2} z$ " and $F_{2} z^{\prime}$.
4.c) Show that for $j=0, \ldots, n-1$,

$$
y_{j+n}=\sum_{k=0}^{2 n-1}\left(z^{\prime \prime}\right)_{k} \omega_{n}^{k j}-\omega_{2 n}^{j} \sum_{k=0}^{2 n-1}\left(z^{\prime}\right)_{k} \omega_{n}^{k j} .
$$

If we introduce $j+n$ in formula (1), we obtain:

$$
y_{j+n}=\sum_{k=0}^{n-1}\left(z^{\prime \prime}\right)_{k} \omega_{n}^{k(j+n)}+\omega_{2 n}^{j+n} \sum_{k=0}^{n-1}\left(z^{\prime}\right)_{k} \omega_{n}^{k(j+n)}
$$

Now, notice that

$$
\begin{gathered}
\omega_{n}^{k(j+n)}=\omega_{n}^{k j} \underbrace{\omega_{n}^{k n}}_{=\left(\omega_{n}^{n}\right)^{k}=1^{k}=1}=\omega_{n}^{k j} \\
\omega_{2 n}^{j+n}=\omega_{2 n}^{j} \omega_{2 n}^{n}=\omega_{2 n}^{j}(-1)=-\omega_{2 n}^{j}
\end{gathered}
$$

which proves that the formula is correct.
Exercise 5. Use the Fast Fourier Transform to compute

$$
F_{4} z
$$

where

$$
z=(0,1,1,0)
$$

and check that the result is correct by computing the matrix multiplication $F_{4} z$ directly.

Recall that the fast Fourier transform algorithm may be written as

$$
\begin{aligned}
& y_{1}=F_{2} z^{\prime \prime}+\Omega_{2} F_{2} z^{\prime} \\
& y_{2}=F_{2} z^{\prime \prime}-\Omega_{2} F_{2} z^{\prime}
\end{aligned}
$$

where $y=\left(y_{1}, y_{2}\right)$, and the matrices F_{2} and Ω_{2} are given by

$$
F_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \Omega_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right]
$$

Now, $z^{\prime \prime}=(0,1)$ and $z^{\prime}=(1,0)$, so

$$
F_{2} z^{\prime \prime}=(1,-1) \quad F_{2} z^{\prime}=(1,1)
$$

and

$$
\Omega_{2}\left(F_{2} z^{\prime}\right)=(1, \mathrm{i})
$$

We thus obtain that

$$
\begin{aligned}
& y_{1}=(1,-1)+(1, \mathrm{i})=(2,-1+\mathrm{i}) \\
& y_{2}=(1,-1)-(1, \mathrm{i})=(0,-1-\mathrm{i})
\end{aligned}
$$

so

$$
y=(2,-1+\mathrm{i}, 0,-1-\mathrm{i})
$$

We compare that with the direct calculation of $F_{4} z$ now:

$$
y=(1+1, \mathrm{i}-1,-1+1,-\mathrm{i}-1)
$$

and we see that we obtain the same result.

