

**MA2501** Numeriske Metoder Olivier Verdier

## Training Assignment 12

## 2012-04-12

This assignment has 4 tasks.

**Exercise 1**. Consider the following differential equation:

$$u'(t) = -u(t)\cos(t)$$

**1.a)** Try to understand what is the unknown in that equation. Write one possible initial condition.

The unknown is the function u itself. A possible initial condition would be u(0) = 1, for instance.

**1.b)** Write down one step of the Explicit and Implicit Euler methods for that differential equation

We assume in both cases a time step  $\Delta t$ . For explicit Euler, we have

 $u_{n+1} = u_n - \Delta t u_n \cos(t_n)$ 

For implicit Euler, the next value  $u_{n+1}$  is defined implicitly by:

$$u_{n+1} = u_n - \Delta t u_{n+1} \cos(t_n + \Delta t)$$

Exercise 2. Consider Newton's Equation modelling an oscillator without friction.

$$u''(t) = -u(t)$$

## **2.a)** Write down one step of the Explicit Euler method to solve that equation numerically.

The trick is to first transform this equation into a first order differential equation. To this end, introduce a new variable (the "velocity") v which is equal to

$$v(t) = u'(t).$$

The original equation is equivalent to the equation

$$u'(t) = v(t)$$
$$v'(t) = -u(t)$$

Now it is easy to discretise that equation with, for instance, the explicit Euler method. We obtain

$$u_{n+1} = u_n + \Delta t \, v_n$$
$$v_{n+1} = v_n - \Delta t \, u_n.$$

- **2.b)** Do the same with the Runge Kutta 4 method (p. 443 in C&K).
- **Exercise 3**. Given a numerical method, for instance explicit Euler, one may define the corresponding "flow" as a mapping:

 $\Phi_h: u_0 \longmapsto u_1$ 

For instance, in the explicit Euler case, this mapping is given by

 $\Phi_h(u_0) = u_0 + hf(u_0)$ 

The *adjoint method* corresponding to a given flow is given by the flow

$$\Psi_h := (\Phi_{-h})^{-1}$$

**3.a)** What is the adjoint method corresponding to explicit Euler?

From

$$u_1 = u_0 - hf(u_0)$$

we deduce

$$u_0 + hf(u_0) = u_1$$

which is the *implicit* Euler method (obtaining  $u_0$  from  $u_1$ )

**3.b**) What is the adjoint method of the Trapezoidal rule, given by:

 $\Phi_h(u_0) = u_1$  such that  $u_1 - u_0 = h(f(u_0) + f(u_1))/2$ 

One sees immediately that

$$\Phi_{-h}(u_0) = u_1 \iff u_0 = \Phi_h u_1$$

so  $\Phi_{-h}^{-1} = \Phi_h$ . The adjoint method of the Trapezoidal rule is thus the trapezoidal rule itself.

- **Exercise 4**. In this exercise, we compute the stability region of the trapezoidal rule.
  - **4.a)** Apply the trapezoidal rule to the differential equation  $u' = \lambda u$ , and write the result as

$$u_1 = A(\lambda h)u_0$$

where A is an expression that you will compute.

Introducing  $f(u) = \lambda u$  in the expression for the trapezoidal rule we obtain

$$u_1 = u_0 + h\lambda(u_0 + u_1)$$

 $u_1 = \frac{1+h\lambda}{1-h\lambda}u_0$ 

 $A(z) = \frac{1+z}{1-z}$ 

from which we obtain

SO

## 4.b) What is the region of the complex plane corresponding to the equation

 $|A(z)| \le 1$ 

What restriction is there to the step size h if  $\Re(\lambda) < 0$  (stable system)?

 $|A(z)| \le 1$ 

 $|A(z)|^2 \le 1$ 

The condition is that

which is equivalent to

which is equivalent to

$$|1+z|^2 \le |1-z|^2$$

(because  $|1 - z| \ge 0$ ) From this we obtain

$$1 + 2\Re z + |z|^2 \le 1 - 2\Re z + |z|^2$$

which is equivalent to

$$\Re z \le 0$$

The stability region is thus the whole half complex plane.

Assuming that  $\Re \lambda \leq 0$ , this implies that for any h,  $\Re(h\lambda) \leq 0$  so the method is stable without any restriction on the stepsize h.