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Exercise set 1

1 We consider an optimal control problem for launching a rocket to a given altitude H > 0.
We make simplifying assumptions that the mass m > 0 of the rocket stays constant during
the flight and does not change as we burn fuel, ignore the change in gravity g with the
altitude, and also the forces due to the friction with the atmosphere. The state of the system
(flight plan, so to speak) is given by a function y :R+ →R+, t 7→ y(t ), which describes the
altitude change with time, and the control t 7→ u(t) is the force produced by the engine.
Thus the state equation is given by an initial value problem (Newton’s 2nd law):

my ′′(t ) = u(t )−mg ,

y(0) = y ′(0) = 0.
(1)

We would like to minimize the fuel needed to attain the altitude H (we assume that the
rate of fuel consumption is proportional to the exerted force u(t )):

J (y,u) =
∫ T

0
|u(t )|dt ,

where T > 0 is the time at which the rocket reaches H . Note that T is not a constant but
depends on y and u.

a) Integrate the state equation (1) twice (we assume that the control u is regular enough
to allow us to do this) to show that

y(t ) = 1

m

∫ t

0
(t −τ)u(τ)dτ− g t 2

2
. (2)

In particular, T satisfies the equation

H + g T 2

2
= 1

m

∫ T

0
(T −τ)u(τ)dτ. (3)

b) Utilize Hölder’s inequality in the right hand side of (3) to show the following lower
bound on J for all controls/states satisfying (2):

J (y,u) ≥ m

(
H

T
+ g T

2

)
. (4)

Further argue that the inequality is strict for all functions u. (The equality can only
be attained when u is a distribution.)

c) Note that the right hand side of (4) still depends on (y,u) through T . Show that the
following bound holds for all T > 0:

m

(
H

T
+ g T

2

)
≥ m

√
2g H . (5)
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Exercise set 1

Combining the strict bound (4) and the greater than or equal bound (5) we can see that the
lower bound m

√
2g H is not attained by any control. We will now construct a sequence

of controls/states (yn ,un) such that limn→∞ J(yn ,un) = m
√

2g H . The underlying idea is
that (3) implies that burning fuel “early” counts with a larger weight towards attaining the
altitude H .

Let us consider the following control:

un(t ) =
{
αn , 0 < t < n−1,

0, otherwise,
(6)

where αn > 0 is a constant to be determined.

d) Calculate the value of αn from (3). Note: you will end up with a quadratic equation
for T (i.e., the rocket reaches T once on the way up, and once on the way down
when it starts falling due to the gravity pulling.) Select the value of αn such that the
quadratic equation admits only one root, i.e., we burn the smallest amount of fuel so
that the rocket reaches the altitude H with velocity 0 and then starts falling down.

e) Show that limn→∞ J (yn ,un) = m
√

2g H . Combined with the strict bound (4) and the
greater than or equal bound (5), this shows that the original optimal control problem
does not admit an optimal solution in the class of regular functions. However, we can
approximate the lower bound arbitrarily closely by for example using the controls of
the type (6).

2 We consider a(n artificial) finite-dimensional optimal control problem for y ∈R2 with a
control parameter u ∈R.

The state equation is:
y1 + y2 = u,

y2 = 2u,
(7)

and the const functional is

J (y,u) = 1

2
[(y1 −1)2 + (y2 −2)2]+ λ

2
u2, (8)

where λ> 0.

a) Derive the explicit expressions for the reduced cost functional and its gradient.

b) Formulate the adjoint problem and compute the reduced gradient with the help of
the adjoint state.

c) Assuming Uad =R state the first order necessary optimality conditions for this prob-
lem.
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