MA3201 - Problem sheet 4FALL 2008

The problem session will be on Thursday October 23rd in F3.

Problems from the book:

Page	Exercise number
381	6
388	1*

Also: All problems from the midterm from last year.

Problem 1. Let R be a ring and ϕ : Hom_R(R, R)^{op} \rightarrow R given by $\phi(q) = q(1)$. Show that ϕ is a ring isomorphism.

Problem 2. Let R be a ring, $I \subseteq R$ an ideal, M an R/I-module, and hence an R-module by rm = (r+I)m for $r \in R, m \in M$. Let $N \subseteq M$ be a subgroup. Show that N is an R-submodule if and only if N is an R/I-submodule.

Problem 3^{*}. Let $R = \mathbb{Z}_2 G$, where G is a group of order 2. Show that R is not a semisimple ring.

Problem 4. Let Q be the quiver

 $1 \rightarrow 2 \rightarrow 3$

and let F be a field. Find a nilpotent ideal I in the path algebra FQsuch that FQ/I is a semisimple ring.

Problem 5^{*}. Let F be a field, and let

$$R = \left\{ \begin{pmatrix} a & 0 & 0 \\ b & \alpha & 0 \\ c & 0 & \alpha \end{pmatrix} \mid a, b, c, \alpha \in F \right\}.$$

- (a) Show that R is a ring with 1. Is R commutative?
- (b) Let $J = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{pmatrix} \mid b, c \in F \right\}$. Show that J is a two-sided ideal in R, and that $R/J \simeq F \times F$. (c) Let $e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Show that Re is a maximal left ideal in R, og
- find all left ideals in R which are contained in Re.

Problems marked with \ast can be handed in at the lecture Monday October 20th.

 $\mathbf{2}$