Page 1 of 2

Norwegian University of Science and Technology Department of Mathematical Sciences

Faglig kontakt under eksamen:

Idun Reiten (telefon: 73 53 45 79, 99 24 45 39)

MNFMA318, Rings and modules English Saturday, Desember 7, 2002 Time: 9-13

Permitted aids: None Grades to be announced: Monday, January 6, 2003

Problem 1

Let R denote the field of real numbers and let

$$R = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & c & 0 & 0 \\ d & 0 & e & 0 \\ f & 0 & 0 & g \end{pmatrix}; a, b, c, d, e, f, g \in \mathbb{R} \right\} \quad \text{and} \quad I = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ d & 0 & 0 & 0 \\ f & 0 & 0 & 0 \end{pmatrix}; b, d, f \in \mathbb{R} \right\}$$

- a) Show that R is a ring and that I is an ideal in R.
- **b)** Show that R/I and $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ are isomorphic rings.
- c) Is R a semisimple ring? Is R/I a semisimple ring?
- d) Find 3 minimal left ideals in R.

Problem 2

Let R be a ring and M an R-module. Let N and L be submodules of M.

- a) Show that $N \cap L$ is a submodule of M, and give an example to show that $N \cup L$ is not always a submodule of M.
- b) Assume that M is a noetherian R-module. Show that then N and M/N are noetherian R-modules.

Problem 3

- a) Find the possible invariant factors and rational canonical forms for 6×6 -matrices over the real numbers \mathbb{R} , with minimal polynomial $(x^2 + 1)(x 3)^2$.
- b) Let V be a vector space of dimension 4 over the real numbers \mathbb{R} , and let $T:V\to V$ be a linear transformation. Let v_1,v_2 be elements in V such that $\{v_1,v_2,Tv_2,T^2v_2\}$ is a basis for V, and assume that $Tv_1=2v_1$ and $T^3v_2=2v_2+3Tv_2$. In the usual way we view V (together with $T:V\to V$) as an $\mathbb{R}[x]$ -module. Show that v_1 and v_2 generate V as an $\mathbb{R}[x]$ -module, and find $f_1(x)$ and $f_2(x)$ in $\mathbb{R}[x]$, where $f_1(x)|f_2(x)$, such that $V\simeq \mathbb{R}[x]/(f_1(x))\oplus \mathbb{R}[x]/(f_2(x))$.

Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Faglig kontakt under eksamen: Petter Andreas Berg (73 59 04 83)

EXAM IN RINGS AND MODULES (MA3201)

Thursday, 9th December 2004
Time: 09:00 - 13:00
Grades to be announced: Thursday, 6th January 2005
Permitted aids: None.

Problem 1 Let

$$R = \left\{ \left(\begin{smallmatrix} a & 0 & 0 \\ b & a & 0 \\ c & d & e \end{smallmatrix} \right) \mid a,b,c,d,e \in \mathbb{C} \right\}.$$

- a) Show that R is a ring under the usual addition and multiplication of matrices.
- b) Let

$$I = \left\{ \left(\begin{smallmatrix} 0 & 0 & 0 \\ b & 0 & 0 \\ c & d & 0 \end{smallmatrix} \right) \mid b, c, d \in \mathbb{C} \right\}.$$

Show that I is a two-sided ideal in R, and that I is nilpotent.

- c) Show that R/I and $\mathbb{C} \oplus \mathbb{C}$ are isomorphic rings. Is R/I a semisimple ring?
- d) How can the two-sided ideals in the ring R/I be described in terms of two-sided ideals in R? Find two maximal two-sided ideals in R.

Problem 2

a) Let $\varphi \colon R \to S$ be a homomorphism of rings. Show that any left S-module M becomes a left R-module by defining

$$r \cdot m = \varphi(r)m$$

for all r in R and m in M.

Recall the following: Let F be a field. Suppose A is an algebra over F; that is, there is a map $F \times A \to A$, written $(\alpha, r) \mapsto \alpha \cdot r$, such that A is a vector space over F and

$$\alpha \cdot (rr') = (\alpha \cdot r)r' = r(\alpha \cdot r')$$

for all α in F, and all r and r' in A.

Assume that $0 \neq 1_A$ in A, where 1_A is the identity in A.

b) Show that $\psi \colon F \to A$ given by $\psi(\alpha) = \alpha \cdot 1_A$, is a homomorphism of rings with $\operatorname{Im} \psi \subseteq Z(A)$. Here

$$Z(A) = \{ z \in A \mid za = az \text{ for all } a \in A \}.$$

Also, show that ψ is injective.

c) Suppose that A is a finite dimensional algebra over F; that is, $\dim_F A$ is finite. Show that A is both left artinian and left noetherian.

Let M be a finitely generated left A-module. Show that M is both an artinian and a noetherian A-module.

Problem 3 Let V be a vector space over a field F with $\dim_F V = n < \infty$. Let $T: V \to V$ be a non-zero linear transformation. Then V becomes an F[x]-module by letting

$$x^i \cdot v = T^i(v)$$

for all v in V and $i \geq 0$. It is not necessary to prove this.

a) Let $\operatorname{Ann}_{F[x]}V=\{g(x)\in F[x]\mid g(x)\cdot v=0 \text{ for all } v\in V\}$. Show that $\operatorname{Ann}_{F[x]}V$ is an ideal in F[x].

Let f(x) be the minimal polynomial of T. Show that $\operatorname{Ann}_{F[x]}V=(f(x))$.

- b) Suppose that T is a non-zero nilpotent linear transformation; that is, $T^l = 0$ for some positive integer l. Show that the minimal polynomial f(x) of T is equal to x^m for some integer m with $0 < m \le n$.
- c) Suppose also here that T is a non-zero nilpotent linear transformation. What is the smallest possible dimension of the kernel of T? And what is the largest possible dimension of the kernel of T?

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Page 1 of 2

Contact during exam: Øyvind Solberg/Petter Andreas Bergh

Telephone: 73 59 17 48/73 59 04 83

Exam in course MA3201 Rings and modules English Wednesday November 30, 2005 Time: 09.00-13.00

Permitted aids: none

Grades: 21.12.2005.

Problem 1 Let q be a fixed non-zero element in \mathbb{C} , the set of complex numbers. Define the subset R_q of the ring of 4×4 -matrices over \mathbb{C} by

$$R_q = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & 0 & a & 0 \\ d & c & -qb & a \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\}.$$

- a) Show that R_q is a ring.
- b) For which q in \mathbb{C} is R_q a commutative ring?
- c) For a given element α in \mathbb{C} define the subset

$$I_{\alpha} = \left\{ \begin{pmatrix} \begin{smallmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ ab & 0 & 0 & 0 \\ d & ab & -qb & 0 \end{pmatrix} \mid b, d \in \mathbb{C} \right\}$$

of R_q . Show that I_{α} is a left ideal in R_q for all α in \mathbb{C} .

d) Show that each of the left ideals I_{α} is generated by one element as a left ideal. Show that $I_{\alpha} \simeq R/I_{\alpha q}$ as left R-modules.

Problem 2 Let \mathbb{Q} be the field of rational numbers, and let a and b in \mathbb{Q} be different elements. Find all possible rational canonical forms for 4×4 -matrices over \mathbb{Q} having

$$(x+a)^2(x+b)$$

as a minimal polynomial.

Problem 3 Let \mathbb{C} be the field of complex numbers and $\mathbb{C}[x]$ the polynomial ring over \mathbb{C} in one variable x. Let $\alpha \in \mathbb{C}$ be a complex number.

- a) Show that the map $\varphi_{\alpha} \colon \mathbb{C}[x] \to \mathbb{C}$ defined by $\varphi_{\alpha}(f(x)) = f(\alpha)$ is a surjective ring homomorphism, and use this to show that the ideal generated by $x \alpha$ is a maximal ideal in $\mathbb{C}[x]$.
- b) For which $n \ge 1$ is the ring

$$\begin{pmatrix} \frac{\mathbb{C}[x]}{((x-\alpha)^n)} & \frac{\mathbb{C}[x]}{((x-\alpha)^n)} \\ \frac{\mathbb{C}[x]}{((x-\alpha)^n)} & \frac{\mathbb{C}[x]}{((x-\alpha)^n)} \end{pmatrix}$$

semisimple?

Problem 4 Let R be a ring, and let M be a Noetherian left R-module. Show that any surjective R-homomorphism $f: M \to M$ is an isomorphism. (Hint: Consider the chain $\operatorname{Ker} f \subseteq \operatorname{Ker}(f^2) \subseteq \operatorname{Ker}(f^3) \subseteq \cdots$ of submodules of M).

Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 3

Contact during exam: Øyvind Solberg

Telephone: 73 59 17 48

EXAM IN RINGS AND MODULES (MA3201)

English
Friday 15th December 2006
Time: 09:00-13:00
Permitted aids: None

Grades: 15.01.2007.

Problem 1 Let A be the 3×3 matrix

$$\left(\begin{array}{ccc}1&2&-4\\1&2&2\\-1&1&1\end{array}\right)$$

over \mathbb{C} , the complex numbers.

- a) Find the Smith normal form of the matrix $A xI_3$ over the ring $\mathbb{C}[x]$, where $\mathbb{C}[x]$ is the polynomial ring in one variable x over \mathbb{C} and I_3 is the 3×3 identity matrix.
- b) Find the rational canonical form of the matrix A over \mathbb{C} .
- c) Find the Jordan canonical form of the matrix A over \mathbb{C} .

Problem 2 Let R and S be two rings. An abelian group M is called a S-R-bimodule if M is a left S-module and a right R-module, such that

$$s(mr) = (sm)r$$

for all s in S, for all r in R and for all m in M. Let

$$\Lambda = \left(\begin{smallmatrix} R & 0 \\ M & S \end{smallmatrix} \right)$$

where M is a S-R-bimodule different from (0). Let $({r\atop m}, {0\atop s})$ and $({r'\atop m'}, {0\atop s'})$ be two elements in Λ . The set Λ becomes an abelian group under the binary operation, +, given by

$$\left(\begin{smallmatrix} r & 0 \\ m & s \end{smallmatrix}\right) + \left(\begin{smallmatrix} r' & 0 \\ m' & s' \end{smallmatrix}\right) = \left(\begin{smallmatrix} r+r' & 0 \\ m+m' & s+s' \end{smallmatrix}\right).$$

Define a binary operation, \cdot , on Λ by letting

$$\left(\begin{smallmatrix} r & 0 \\ m & s \end{smallmatrix}\right) \cdot \left(\begin{smallmatrix} r' & 0 \\ m' & s' \end{smallmatrix}\right) = \left(\begin{smallmatrix} rr' & 0 \\ mr' + sm' & ss' \end{smallmatrix}\right).$$

- a) Show that Λ is a ring with 1, when addition, +, and multiplication, ·, is defined as above.
- b) Find
 - (i) an idempotent element different from 0 and 1 in Λ ,
 - (ii) a nilpotent element different from 0 i Λ.
- c) Let $I = \{ \begin{pmatrix} 0 & 0 \\ m & 0 \end{pmatrix} \mid m \in M \}$. Show that I is a two-sided ideal in Λ . Show that $\Lambda/I \simeq R \oplus S$ as rings.

Problem 3 Let k be a field. The map $\varphi: k[x]/(x^2) \to k$ given by

$$\varphi(f(x) + (x^2)) = f(0)$$

is a homomorphism of rings. Let R = k and $S = k[x]/(x^2)$.

a) Let M be a left R-module. Show that M becomes a left S-module by defining

$$s \cdot m = \varphi(s)m$$

for all s in S and for all m in M.

b) Let $M = k^2 = \{(a, b) \mid a, b \in k\}$. Then is M a left k-module by letting

$$\alpha(a,b) = (\alpha a, \alpha b)$$

and a right k-module by letting

$$(a,b)\alpha = (a\alpha,b\alpha)$$

for all α in k and for all (a,b) in M. With these module structures M becomes a k-bimodule (Do not need to show this). By a) we have that the left k-module M is a left S-module by letting $(f(x) + (x^2)) \cdot m = \varphi(f(x) + (x^2))m$. Show that M is a S-R-bimodule, when R = k and $S = k[x]/(x^2)$.

- c) Now let $\Lambda = \begin{pmatrix} R & 0 \\ M & S \end{pmatrix}$, where M is as in b), and Λ is a ring as given in Problem 2. Show that Λ is an algebra over k. What is $\dim_k \Lambda$? Decide if Λ is
 - (i) a left artinian ring,
 - (ii) a left noetherian ring,
 - (iii) a semisimple ring.
- d) Let J be the left ideal $\{\begin{pmatrix} 0 & 0 \\ (0,a) & bx+(x^2) \end{pmatrix} \mid a,b \in k\}$. Consider the left Λ -module $X = \Lambda/J$. Show that $f: X \to X$ given by

$$f(\lambda + J) = \lambda \begin{pmatrix} 0 & 0 \\ (0,0) & 1 + (x^2) \end{pmatrix} + J$$

is a Λ -homomorphism. Find the image $\operatorname{Im} f$ of f. Show that $X = \operatorname{Im} f \oplus Y$ for a submodule Y of X.

Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Faglig kontakt under eksamen: Idun Reiten (99 24 45 39)

EXAM IN RINGS AND MODULES (MA3201)

Tuesday, 11.th December 2007
Time: 09:00 - 13:00
Grades to be announced: Friday, 21 December 2007
Permitted aids: None.

You should give a reason for all answers.

Problem 1

Let F be a field, R the matrix ring

$$\mathbf{R} = \left(\begin{array}{ccc} F & 0 & 0 \\ F & F & 0 \\ F & F & F \end{array} \right)$$

and

$$\mathbf{I} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ F & 0 & 0 \\ F & F & 0 \end{array} \right)$$

- a) Show that I is an ideal in R, and that I is nilpotent. Is R a semisimple ring?
- b) Show that the factor ring R/I is a semisimple ring.
- c) Find 2 different minimal left ideals in R which are isomorphic as R-modules.

d) Find all the ideals in R which contain the ideal I.

Problem 2

Let \mathbb{Z} be the ring of integers, and let R be the ring $\begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix}$

- a) Find all idempotent elements in R, and describe the left ideals of the form Re for an idempotent element e in R.
- b) Let I be the left ideal $\begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 0 \end{pmatrix}$. Find an infinite number of left ideals J in R such that $R = I \oplus J$.

Problem 3

- a) Show that the ring of integers \mathbb{Z} is noetherian, and not artinian.
- b) Give a proof of the fact that if M is a noetherian module over a ring R, then M is a finitely generated R-module.

Problem 4

a) Denote by \mathbb{R} the real numbers. Find the Smith normal form over $\mathbb{R}[x]$ for the matrix

$$\left(\begin{array}{cccc}
-3 - x & 2 & 0 \\
1 & -x & 1 \\
1 & -3 & -2 - x
\end{array}\right)$$

Let $V = \mathbb{R}^3$, and let $T = T_A : V \to V$ be the linear transformation given by the matrix $A = \begin{pmatrix} -3 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & -2 \end{pmatrix}$ with respect to the standard basis for $V = \mathbb{R}^3$. Describe the $\mathbb{R}[x]$ -module V (defined using $T: V \to V$) in terms of cyclic $\mathbb{R}[x]$ -modules.

b) Let A be a 7 x 7 matrix over \mathbb{R} , with characteristic polynomial $c(x) = -(x-1)^2(x-2)^3(x^2+1)$ and with minimal polynomial m(x) of degree 5. Find all the possibilities for the invariant factors for A, (that is, for xI - A), and in each case, the associated rational canonical form for A.