
MA3201 Rings and Modules, 2014

Key Definitions

Definition. A ring is a non-empty set R with two binary operations, + (addition)
and · (multiplication). We usually write r · s as just rs. These operations must
satisfy the axioms:

(1) (R,+) is an abelian group.
(2) Associativity of multiplication: r(st) = (rs)t for all r, s, t in R.
(3) Multiplication is distributive over addition on both sides : r(s+ t) = rs+ rt

and (s+ t)r = sr + tr for all r, s, t ∈ R.
(4) Multiplicative identity: There is an element 1R ∈ R, such that 1Rr = r1R =

r for all r ∈ R.

Lemma. Let R be a ring. Then 0R = 1R if and only if R = {0R}.

Proof. Suppose that R is a ring and 1R = 0R. Then, if r ∈ R, r = r1R = r0R = 0R.
Hence R = {0R}. Conversely, if R = {0R}, then 1R ∈ R, so 1R = 0R. �

Rings satisfying the equivalent conditions in Lemma are called zero rings. An
example of a zero ring is Z1 = {0}, the integers modulo 1. We also have, for any
ring R, the quotient ring R/R, whose only element is the coset 0R/R = 0 +R.

Definition. A commutative ring is a ring in which the multiplication is commuta-
tive, i.e. rs = sr for all a, b ∈ R.

For example, Z and Z[x] are commutative.

Definition. An integral domain is a ring R in which 1R 6= 0R and rs 6= 0R for
any non-zero elements r, s ∈ R.

Note that many mathematicians assume integral domains to be commutative, in
addition to this.

Also, our definition means that integral domains must be non-zero. This is
usually assumed because of a strong relationship with division rings and fields.
Examples include Z and Z[x].

Definition. A division ring is a ring in which 1 6= 0 and every non-zero element
has a multiplicative inverse.

Our definition means that division rings must be non-zero. Examples include Q,
R and C. The quaternions, H, are an example of a non-commutative division ring.
We are aiming for the Wedderburn-Artin theorem, which explains how a certain
class of rings can be built up from division rings and matrix rings over division rings.
From this point of view it is convenient to have that division rings are non-zero.

Definition. A field is a commutative division ring.

Thus, we also insist that fields are non-zero (i.e. that 1 6= 0 in a field). This
definition ensures, for example, that the cardinality of a finite field is a positive
power of a prime number (for example, the field Zp, for p a prime number, has p
elements). Such fields will be discussed in the Galois Theory course, MA3202.

We shall also see that, for an ideal I, R/I is a field if and only if I is a maximal
ideal. If we allowed zero fields, we would have to assume that I is proper (i.e.
I 6= R) for this to hold.

1



2

Other examples of fields include Q, R and C.

Definition. Let R be a ring. Then a non-empty subset S of R is said to be a
subring of R if and only if

(1) For all r, s ∈ S, r − s ∈ S.
(2) For all r, s ∈ S, rs ∈ S.
(3) 1R ∈ S.

Here, since we assume rings to always have an identity, it is natural to insist that
the identity element of a ring lies in any subring. Since the multiplicative identity
of a ring is unique, it will be the identity element for the subring also.

Definition. Let R and S be rings. A map ϕ : R → S with the properties:

(1) ϕ(r + s) = ϕ(r) + ϕ(s) for all r, s ∈ R.
(2) ϕ(rs) = ϕ(r)ϕ(s) for all r, s ∈ R.
(3) ϕ(1R) = 1S

is called a ring homomorphism (from R to S).

Similarly, here we insist that a ring homomorphism from R to S sends the
multiplicative identity of R to the multiplicative identity of S.

Later in the course, we will also consider the following.

Definition. Let R be a ring. Then a (left) R-module is a pair consisting of an
abelian group M and a map from R ×M to M mapping (r,m) to rm, satisfying
the axioms:

(1) r(m1 +m2) = rm1 + rm2 for all r ∈ R, m1,m2 ∈ M ;
(2) (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R, m ∈ M ;
(3) (r1r2)m = r1(r2)m for all r1, r2 ∈ R, m ∈ M ;
(4) 1Rm = m for all m ∈ M .

Similarly, here, we insist that 1Rm = m for all elements m ∈ M .
Sometimes algebraic objects which satisfy all of the axioms for a ring except the

existence of a multiplicative identity, arise. For example, 2Z, the even integers.
Sometimes one ring can be contained in another ring but have a different identity

element (see, for example, Exercise 3(b) and 6(b) on page 174 of the course book,
from Problem Sheet 1). Such rings are not regarded as subrings in this course,
since they do not satisfy the third axiom in the definition of a subring.

Remark. The rings we consider in this course are often known as unital rings or
rings with identity to emphasize the fact that they have a multiplicative identity
element (sometimes referred to as a unit element). Although our focus is on rings
with identity, it is important to note that rings without identity are also studied.

Example: Let F be a field, and let Q be the quiver:

1
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// 2
β

// 3

Let A be the subspace of FQ spanned by e1, e2, α. Then A does not contain 1FQ =
e1 + e2 + e3 but does satisfy the first two axioms in the definition of a subring.
Although A is not a subring of FQ, it is a ring in its own right, with identity
element 1A = e1 + e2. It is isomorphic to the path algebra of
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