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Notes on Differential Equations
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be a vector function of t. Then ẋ =
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. Consider the first order linear

differential equation with initial conditions:

ẋ = Ax;

x(0) = x0.
(1)

Given an n× n matrix A over R, define

eA = In +A+
1

2!
A2 +

1

3!
A3 + · · · .

We sometimes denote this by exp(A). It can be shown that this is well-defined. Here, for a
scalar λ ∈ R, λA denotes the matrix A with every entry multiplied by λ.
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Theorem 10.1 (Fundamental theorem of linear systems)
The unique solution to (1) is

x = eAtx0.

So, the problem is to compute eAt. To do this we use the Jordan canonical form of A over R.
Let P be an invertible n× n matrix such that

PAP−1 = J =
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Jc











,

where each Ji is a generalized Jordan block.
For simplicity, we shall assume that each Ji is a Jordan block, i.e. of the form











λ

1 λ

1
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1 λ











We substitute y = Px. Then:

ẏ = P ẋ = PAx = PAP−1y = Jy.
1



2

The solution to this equation is
y = eJty0,

where y0 = Px0. Then we get the solution:

(2) x = P−1y = P−1eJtPx0.

We have

eJt = exp
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so we may consider a single block

Ji =
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= λIn +X

where

X =
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.

If this is a d× d matrix, then note that Xd = 0, i.e. X is a nilpotent matrix. Then we have:

eJt = exp((λId +X)t)

= exp(λtId) exp(Xt)

=
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This allows us to compute eJit for each i, and hence eJt and therefore the solution (2) x =
P−1eJtPx0 for x.

For more information on this, see e.g. Section 1.8 of the book below (or other books on dif-
ferential equations). In particular, this considers the case of the other (i.e. degree 2) irreducible
polynomials over R.
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