Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Page 1 of 2

Contact during exam: Øyvind Solberg/Petter Andreas Bergh

Telephone: 73 59 17 48/73 59 04 83

Exam in course MA3201 Rings and modules English Wednesday November 30, 2005 Time: 09.00-13.00

Permitted aids: none

Grades: 21.12.2005.

Problem 1 Let q be a fixed non-zero element in \mathbb{C} , the set of complex numbers. Define the subset R_q of the ring of 4×4 -matrices over \mathbb{C} by

$$R_q = \left\{ \begin{pmatrix} \begin{smallmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & 0 & a & 0 \\ d & c & -qb & a \end{pmatrix} \mid a,b,c,d \in \mathbb{C} \right\}.$$

- a) Show that R_q is a ring.
- b) For which q in \mathbb{C} is R_q a commutative ring?
- c) For a given element α in \mathbb{C} define the subset

$$I_{\alpha} = \left\{ \begin{pmatrix} \begin{smallmatrix} 0 & 0 & 0 & 0 \\ b & 0 & 0 & 0 \\ ab & 0 & 0 & 0 \\ d & ab - qb & 0 \end{pmatrix} \mid b, d \in \mathbb{C} \right\}$$

of R_q . Show that I_{α} is a left ideal in R_q for all α in \mathbb{C} .

d) Show that each of the left ideals I_{α} is generated by one element as a left ideal. Show that $I_{\alpha} \simeq R/I_{\alpha q}$ as left R-modules.

Problem 2 Let \mathbb{Q} be the field of rational numbers, and let a and b in \mathbb{Q} be different elements. Find all possible rational canonical forms for 4×4 -matrices over \mathbb{Q} having

$$(x+a)^2(x+b)$$

as a minimal polynomial.

Problem 3 Let \mathbb{C} be the field of complex numbers and $\mathbb{C}[x]$ the polynomial ring over \mathbb{C} in one variable x. Let $\alpha \in \mathbb{C}$ be a complex number.

- a) Show that the map $\varphi_{\alpha} \colon \mathbb{C}[x] \to \mathbb{C}$ defined by $\varphi_{\alpha}(f(x)) = f(\alpha)$ is a surjective ring homomorphism, and use this to show that the ideal generated by $x \alpha$ is a maximal ideal in $\mathbb{C}[x]$.
- b) For which $n \ge 1$ is the ring

$$\begin{pmatrix} \frac{\mathbb{C}[x]}{((x-\alpha)^n)} & \frac{\mathbb{C}[x]}{((x-\alpha)^n)} \\ \frac{\mathbb{C}[x]}{((x-\alpha)^n)} & \frac{\mathbb{C}[x]}{((x-\alpha)^n)} \end{pmatrix}$$

semisimple?

Problem 4 Let R be a ring, and let M be a Noetherian left R-module. Show that any surjective R-homomorphism $f \colon M \to M$ is an isomorphism. (Hint: Consider the chain $\operatorname{Ker} f \subseteq \operatorname{Ker}(f^2) \subseteq \operatorname{Ker}(f^3) \subseteq \cdots$ of submodules of M).