Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Faglig kontakt under eksamen: Idun Reiten (99 24 45 39)

EXAM IN RINGS AND MODULES (MA3201)

Tuesday, 11.th December 2007
Time: 09:00 - 13:00
Grades to be announced: Friday, 21 December 2007
Permitted aids: None.

You should give a reason for all answers.

Problem 1

Let F be a field, R the matrix ring

$$\mathbf{R} = \left(\begin{array}{ccc} F & 0 & 0 \\ F & F & 0 \\ F & F & F \end{array} \right)$$

and

$$\mathbf{I} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ F & 0 & 0 \\ F & F & 0 \end{array} \right)$$

- a) Show that I is an ideal in R, and that I is nilpotent. Is R a semisimple ring?
- b) Show that the factor ring R/I is a semisimple ring.
- c) Find 2 different minimal left ideals in R which are isomorphic as R-modules.

d) Find all the ideals in R which contain the ideal I.

Problem 2

Let $\mathbb Z$ be the ring of integers, and let R be the ring $\begin{pmatrix} \mathbb Z & 0 \\ \mathbb Z & \mathbb Z \end{pmatrix}$

- a) Find all idempotent elements in R, and describe the left ideals of the form Re for an idempotent element e in R.
- b) Let I be the left ideal $\begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 0 \end{pmatrix}$. Find an infinite number of left ideals J in R such that $R = I \oplus J$.

Problem 3

- a) Show that the ring of integers Z is noetherian, and not artinian.
- b) Give a proof of the fact that if M is a noetherian module over a ring R, then M is a finitely generated R-module.

Problem 4

a) Denote by \mathbb{R} the real numbers. Find the Smith normal form over $\mathbb{R}[x]$ for the matrix

$$\begin{pmatrix}
-3-x & 2 & 0 \\
1 & -x & 1 \\
1 & -3 & -2-x
\end{pmatrix}$$

Let $V = \mathbb{R}^3$, and let $T = T_A : V \to V$ be the linear transformation given by the matrix $A = \begin{pmatrix} -3 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & -2 \end{pmatrix}$ with respect to the standard basis for $V = \mathbb{R}^3$. Describe the $\mathbb{R}[x]$ -module V (defined using $T: V \to V$) in terms of cyclic $\mathbb{R}[x]$ -modules.

b) Let A be a 7 x 7 matrix over \mathbb{R} , with characteristic polynomial $c(x) = -(x-1)^2(x-2)^3(x^2+1)$ and with minimal polynomial m(x) of degree 5. Find all the possibilities for the invariant factors for A, (that is, for xI - A), and in each case, the associated rational canonical form for A.