Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 3

Contact during the exam: Idun Reiten (73 59 17 42/ 99 24 45 39)

EXAM IN MA3201 RINGS AND MODULES

Thursday Desember 4, 2008
Time: 09.00 - 13:00
Sensurdato: Monday, 5. January 2009
Permitted aids: None.
English

You must give arguments for all your answers.

 \mathbb{R} denotes the real numbers and \mathbb{Z} denotes the integers.

Problem 1

Let F be a field and

$$R = \left(\begin{array}{ccc} F & 0 & 0 \\ F & F & 0 \\ F & 0 & F \end{array}\right)$$

- a) Show that R is a ring and that $I = \begin{pmatrix} 0 & 0 & 0 \\ F & 0 & 0 \\ F & 0 & 0 \end{pmatrix}$ is an ideal in R.
- b) Show that the factor ring R/I is isomorphic to the ring $F \times F \times F$. Is R/I a semisimple ring?

c) Show that
$$I_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ F & 0 & 0 \end{pmatrix}$$
 and $I_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & F & 0 \\ 0 & 0 & 0 \end{pmatrix}$

are minimal left ideals in R, and that I_1 and I_2 are not isomorphic R-modules.

Problem 2

- a) Let R be a ring and M a noetherian R-module. Let N be a submodule of M. Show that the factor module M/N is a noetherian R-module.
- b) Show that the ring of integers \mathbb{Z} is not an artinian ring.

Problem 3

Let R be a ring and I a left ideal in R. Assume there is a left ideal J in R such that $R = I \bigoplus J$. Show that I = Re, where e is an idempotent.

Let F be a field and $I=\left(\begin{array}{cc} F & 0 \\ F & 0 \end{array}\right)$ a left ideal in the ring $\left(\begin{array}{cc} F & 0 \\ F & F \end{array}\right)$. Find an idempotent e in R such that I=Re, and a left ideal J in R such that $R=I\bigoplus J$.

Problem 4

Find a nonzero nilpotent ideal in the ring $\mathbb{Z}/(4)$. For which $n \geq 1$ is the ring

$$\begin{pmatrix} Z/(2^n) & Z/(2^n) \\ Z/(2^n) & Z/(2^n) \end{pmatrix}$$
 semisimple?

Problem 5

a) Find Smith normal form over Z of the matrix

$$A = \left(\begin{array}{ccc} 0 & 2 & -1 \\ -3 & 8 & 3 \\ 2 & -4 & -1 \end{array}\right)$$

- b) Let A be a 6×6 matrix over \mathbb{R} with minimal polynomial $m(x) = (x^2 + 1)(x 2)(x 1)$. Find all possibilities for the non-unit monic invariant factors for the matrix $A xI_6$. In each case, find the corresponding rational canonical form for A.
- c) Let V be a vector space over \mathbb{R} of dimension 4, and let $T:V\to V$ be a linear transformation. View V(with T) as $\mathbb{R}[x]$ -module in the usual way. Assume that $\{v_1,v_2,Tv_2,T^2v_2\}$ is a basis for the vector space V, for some v_1,v_2 in V, and that $Tv_1=v_1$ and $T^3v_2=4T^2(v_2)-5T(v_2)+2v_2$. Find $f_1(x)$ and $f_2(x)$ in $\mathbb{R}[x]$, with $f_1(x)|f_2(x)$ such that $V\simeq \mathbb{R}[x]/(f_1(x))\bigoplus \mathbb{R}[x]/(f_2(x))$ as $\mathbb{R}[x]$ -modules.