Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2

Scientific contact during the exam: Tore Forbregd (73 59 16 25)

MA3201 Rings and modules

Monday 13th December 2010 Time: 09:00-13:00 Permitted aids: Simple calculator

Problem 1 Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 0 & 4 & 2 \\ 6 & 1 - 18 & -9 \\ -12 & 0 & 45 & 22 \end{pmatrix}$ in the full matrix ring $M_4(\mathbb{R})$, where \mathbb{R} denotes the real numbers.

a) Find the Smith normal form of the matrix

$$A - xI_4 = \begin{pmatrix} 1-x & 0 & 0 & 0\\ -2 & -x & 4 & 2\\ 6 & 1 & -18-x & -9\\ -12 & 0 & 45 & 22-x \end{pmatrix}$$

over $\mathbb{R}[x]$, where I_4 denotes identity matrix in $M_4(\mathbb{R})$.

- b) Compute the rational canonical form of A.
- c) Compute the Jordan canonical form of A.

Problem 2 Let $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ in the full matrix ring $M_3(\mathbb{Z}_2)$, where \mathbb{Z}_2 is the field with two elements.

Define $\psi \colon \mathbb{Z}_2[x] \to M_3(\mathbb{Z}_2)$ by

$$\psi(f(x)) = a_0 I_3 + a_1 A + a_2 A^2 + \dots + a_m A^m,$$

when $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m$ in $\mathbb{Z}_2[x]$ and I_3 denotes the identity matrix in $M_3(\mathbb{Z}_2)$.

- a) Show that ψ is a homomorphism of rings.
- b) Find the kernel $\operatorname{Ker} \psi$ of ψ , and show that the image of ψ , denoted by $\operatorname{Im} \psi$, is a subring of $M_3(\mathbb{Z}_2)$ and a field with 8 elements.
- c) Let $F = \text{Im } \psi$. Why is $M_3(\mathbb{Z}_2)$ not an algebra over F, when the action of the subring F on $M_3(\mathbb{Z}_2)$ is the natural one? Find a field k such that $M_3(\mathbb{Z}_2)$ is an algebra over k, and compute the dimension of $M_3(\mathbb{Z}_2)$ as a vector space over k.

Problem 3 Let R be the subset $\left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ c & 0 & b & 0 \\ 0 & d & 0 & a \end{pmatrix} \mid a,b,c,d \in \mathbb{C} \right\}$ of the full 4×4 -matrix ring $M_4(\mathbb{C})$ over the complex numbers \mathbb{C} .

- a) Show that R is a ring with 1.
- b) Let I be the subset $\left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 \\ 0 & d & 0 & 0 \end{pmatrix} \mid c, d \in \mathbb{C} \right\}$ of R. Show that I is a two-sided ideal in R, and that $R/I \simeq \mathbb{C} \oplus \mathbb{C}$. Is R a semisimple ring?
- c) (i) Show that I is a nilpotent ideal in R.
 - (ii) Show that any two-sided prime ideal A in R contains any nilpotent two-sided ideal J, i.e. $J \subseteq A$ for all nilpotent two-sided ideal J in R.
 - (iii) Find two different maximal two-sided ideals in R.
- d) Let M be a left R-module, and let

$$IM = \left\{ \sum_{i=1}^{n} a_i x_i \mid a_i \in I, x_i \in M, \text{ for all } i = 1, 2, \dots, n, n \text{ a positive integer} \right\}.$$

- (i) Show that IM is a submodule of M.
- (ii) Let I be as in (b). The factor M/IM becomes a left module over R via

$$r \cdot (m + IM) = rm + IM,$$

for r in R and m in M. Assume that M/IM has $\{\overline{m_1}, \overline{m_2}, \ldots, \overline{m_t}\}$ as generators as a left R-module. Let $\{m_i\}_{i=1}^t$ be elements in M such that $\overline{m_i} = m_i + IM$ in M/IM. Show that $\{m_i\}_{i=1}^t$ generates M as left R-module.