
MA3201 Rings and Modules, 2014

Solution Sheet 2

To be discussed on Friday 19 September and Friday 26 September.

Problems from: Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract
algebra. Second edition. Cambridge University Press, Cambridge, 1994.

Page Problem number
187 4 (second part)
194 2,4
202 4, 6
209 3
210 1, 2

Page 187, Q4 second part.

By Corollary 2.29 from lectures, the ideals of Z/(10) are of the form I/(10) for
an ideal I of Z containing (10). The ideals of Z are of the form (a), for a ∈ Z. Since
(a) = (−a) and (10) 6⊆ (0) we can assume that a > 0. We have (10) ⊆ (a) if and
only if a|10, so the ideals of Z containing (10) are (1) = Z, (2), (5) and (10). Hence
the ideals of Z/(10) are

Z/(10), (2)/(10), (5)/(10), (10)/(10).

Page 194, Q2.

We answer the corresponding question with Z replaced by Q. Define a map
ϕ : Q[x] → Q[i] by setting

ϕ(a0 + a1x+ · · ·+ arx
r) = a0 + a1i+ · · ·+ ari

r

for any polynomial a0 + a1x+ · · ·+ arx
r ∈ Q[x]. Then it can be shown that ϕ is a

ring homomorphism.
If f ∈ Q[x] lies in the kernel of ϕ, then f(i) = 0. Since f has real coefficients,

f(−i) = 0 also. Write f = q · (x2 + 1) + r where q, r ∈ Q[x] and r = 0 or the
degree of r is less than 2. Since f(i) = f(−i) = 0, r(i) = r(−i) = 0, which gives a
contradiction unless r = 0. So f ∈ (x2 + 1).

If f ∈ (x2 +1) then f = q · (x2 +1) for some q ∈ Q[x], so ϕ(f) = q(i)(i2+1) = 0
and f ∈ kerϕ. Hence kerϕ = (x2 + 1).

The image of ϕ contains 1 and ϕ(x) = i, so must be the whole of Q[i], as it is
a subring of Q[i]. Hence, applying the Fundamental Theorem of Homomorphisms,
we obtain an isomorphism:

ϕ :
Q[x]

(x2 + 1)
∼= Q[i]

as required.
For the original question (i.e. working over Z instead of Q), we can use a version

of the division algorithm over a commutative integral domain (since Z is a commu-
tative integral domain): see the book, Section 11.4, Theorem 4.1 on page 220 (but
this is beyond the scope of the course).
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Page 194, Q4.

Let R be a commutative ring. Recall that an element r in R is said to be nilpotent
if rn = 0 for some integer n ≥ 1. Let N be the set of all nilpotent elements in R.
Let x, y ∈ N . Then there are integers n,m ≥ 1 such that xn = 0 and ym = 0. We
have, using the binomial expansion,

(1) (x+ y)n+m =
n+m
∑

r=0

(

n+m

r

)

xryn+m−r.

Fix 0 ≤ r ≤ n+m. If r < n then n+m− r > n+m− n = m. It follows that each
of the terms on the right hand side of (1) is zero and thus that x+ y ∈ N .

Let r ∈ R and x ∈ N . Then there is an integer n ≥ 1 such that xn = 0. So
(rx)n = rnxn = 0, and thus rx ∈ N . We have shown that N is an ideal in R.

If r+N is a nilpotent element in R/N , then (r+N)n = 0 for some integer n ≥ 1,
so rn +N = 0+N and therefore rn ∈ N and is itself nilpotent. Therefore there is
an integer m ≥ 1 such that (rn)m = 0, so rnm = 0 and r ∈ N . Hence r + N = 0
and we see that the only nilpotent element of R/N is 0 +N .

Let R = M2(Z). Then R is a noncommutative ring. Let

X =

(

0 1
0 0

)

Y =

(

0 0
1 0

)

∈ R.

Then X2 = Y 2 = 0. But

(2) X + Y =

(

0 1
1 0

)

, (X + Y )2 = 1R.

If X+Y is nilpotent then let n be minimal such that (X +Y )n = 0R. Then n > 1.
But then (X + Y )n−2 = 0R by (2), a contradiction.

Page 202, Q4.

Let e ∈ R be idempotent. Then eR and (1− e)R are right ideals of R. We argue
as in Lemma 2.36 from lectures. Note that (1−e)e = e−e2 = 0, e(1−e) = e−e2 = 0
and (1− e)2 = 1− e− e+ e2 = 1− e. Suppose that er + (1− e)s = er′ + (1− e)s′

for r, s ∈ R. Then

e2r + e(1− e)s = e2r′ + e(1− e)s′,

so er = er′. Similarly, (1 − e)s = (1 − e)s′, so the sum eR + (1 − e)R is direct.
Furthermore 1 = e1 + (1− e)1 ∈ eR+ (1− e)R, so eR⊕ (1 − e)R = R.

Page 202, Q6.

(a) We have seen in lectures that for any ring R and a ∈ R, Ra is a left ideal of
R and aR is a right ideal of R.

(b) Let A be a non-zero left ideal of R contained in Reii. Let X be a non-zero
matrix in A. Since ejkeii = 0 for i 6= k and ejieii = eji, we have

X = X1ie1i + · · ·+Xnieni.

Since X is non-zero, we have Xji 6= 0 for some j. Then X−1

ji e1jX = e1i ∈ A. Hence
ej1e1i = eji ∈ A for all j, and it follows that A = Reii. The statement for right
ideals is similar.
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(c) We have 1 = e11 + · · · enn lies in the sum of the Reii, so the sum is equal to
R. Furthermore, eiiejj = 0 for all i 6= j. By Lemma 2.36 in the lectures

R =

n
⊕

i=1

Reii.

The other statement is similar.
(d) By (b), each of the ideals Reii is a miminal left ideal. So, by (c) and Example

3.4(e) in the book, every left ideal in R is of the form Re, where e is an idempotent.
The statement for right ideals is similar.

Page 209, Q3.

Let a = x2 + 2x+ 2 and b = x2 − 2x+ 2, elements of Q[x]. Then ab = (x4 + 4).
But any non-zero element of (x4 + 4) will have degree at least 4, so a, b 6∈ (x4 + 4).
It follows (from Theorem 2.48 in lectures) that (x4+4) is not a prime ideal in Q[x].

Page 210, Q1.

Let A,B be nilpotent ideals in a ring R. Then there are integers n,m such that
An = {0} and Bm = {0}. Recall that

A+B = {a+ b : a ∈ A, b ∈ B}.

Then any element of (A + B)n+m is a finite sum of elements of R of the form
(a1 + b1)(a2 + b2) · · · (an+m + bn+m) for ai ∈ A, bi ∈ B. Expanding this out, we
obtain a sum of products, each of which contains r elements from A and n+m− r
elements from B, for some r with 0 ≤ r ≤ n+m. If r < n then n+m− r > m, so
there are always either at least n elements from A or at least m elements from B in
each product. So each product lies in An or Bm (since A,B are ideals), and hence
is zero. It follows that (A+B)n+m = {0} and A+B is nilpotent as required.

Page 210, Q2.

Let A1, . . . , An be nil ideals in a commutative ring R. Let x ∈ A1 + · · · + An.
Then there are a1 ∈ A1, . . . , an ∈ An such that x = a1 + · · · + an. For each i,
ai ∈ Ai, so there is an integer mi such that ami

i = 0. Then xm1+···+mn is a sum
of products, each containing m1 + · · · + mn elements from {a1, . . . , an}. Such a
product cannot contain fewer than mi instances of ai for each i, so there must be
some i for which it contains at least mi instances of ai. Since R is commutative,
such a product is zero. It follows that xm1+···+mn = 0 and therefore A1 + · · ·+An

is nil.

Problem 1. Let R be a commutative ring and P a prime ideal of R. Show that
R/P is an integral domain.

Since P 6= R, R/P is a non-zero ring. Let a, b ∈ R and suppose that (a+P )(b+
P ) = 0 + P . Then ab ∈ P . Since P is a prime ideal, either a ∈ P or b ∈ P . Hence
either a+ P = 0 + P or b+ P = 0 + P . Hence R/P is an integral domain.

Problem 2. Let F be a field and let

R = U3(F) =





F F F

0 F F

0 0 F



 .
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Show that

I =





0 F F

0 0 F

0 0 0





is an ideal of R and find the ideals of R containing I. Which of these are maximal
ideals of R?

Define a map ϕ : R → F× F× F by setting

ϕ









a b c
0 d e
0 0 f







 = (a, d, f).

It is easy to check that ϕ is a ring homomorphism. The kernel is I, so I is an
ideal of R. The image is F × F × F. Note that the only ideals in F are {0} and
F. Applying an analogous argument to Problem 4 on Problem Sheet 1, we see that
the left ideals (and hence the ideals) of F×F×F are of the form I1 × I2 × I3 where
each Ii is either {0} or F. By the Correspondence Theorem (Theorem 2.28) we see
that the ideals of R containing I are of the form ϕ−1(I1 × I2 × I3) with I1, I2, I3 as
above, i.e.





0 F F

0 0 F

0 0 0



 ,





F F F

0 0 F

0 0 0



 ,





0 F F

0 F F

0 0 0



 ,





0 F F

0 0 F

0 0 F



 ,





F F F

0 F F

0 0 0



 ,





F F F

0 0 F

0 0 F



 ,





0 F F

0 F F

0 0 F



 ,





F F F

0 F F

0 0 F



 .

Let J be one of these ideals, J 6= R. Then J is maximal if J ⊆ K for some ideal
K implies K = J or K = R. If J ⊆ K then I ⊆ K (as I ⊆ J) so J is maximal if
no other ideal in the list contains J , apart from J itself or the whole of R.

We see that the maximal ideals of R containing I are




F F F

0 F F

0 0 0



 ,





F F F

0 0 F

0 0 F



 ,





0 F F

0 F F

0 0 F



 .

Problem 3.

Let n be an integer, n ≥ 2. Show that the ring Z cannot be written as a direct
sum of n non-zero left ideals.

Firstly, since Z is commutative, left ideals and ideals in Z are the same thing.
Suppose that Z = I1 + · · · + In, where each Ii is a non-zero ideal of Z and n ≥ 2.
Then, for each i, Ii = (ai) for some non-zero integer ai. Then we have 1 =
x1 + · · ·+ xn, with xi ∈ Ii for all i. But we also have

1 = (x1 − a1a2) + (x2 + a1a2) + x3 + · · ·+ xn,

noting that x1 − a1a2 ∈ I1 and x2 + a1a2 ∈ I2. Hence the sum I1 + · · ·+ In is not
direct.


