MA3201 Rings and Modules, 2014

Solution Sheet 3

To be discussed on Friday 3 October and Friday 10 October.

Problems from: Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract algebra. Second edition. Cambridge University Press, Cambridge, 1994.

	Page	Problem number
	248	1, 2, 3
2	252-3	5, 8
	260	1, 4, 6, 7
	268	1, 3, 6, 7

Page 248, Q1

Suppose that S is a ring and R a subring of S. Then S is an abelian group. Furthermore, the axioms:

- (1) $r(s_1 + s_2) = rs_1 + rs_2$ for all $r \in R$, $s_1, s_2 \in S$;
- (2) $(r_1 + r_2)s = r_1s + r_2s$ for all $r_1, r_2 \in R$, $s \in S$;
- (3) $(r_1r_2)s = r_1(r_2s)$ for all $r_1, r_2 \in R$, $s \in S$;
- (4) $1_R s = s$ for all $s \in S$.

all hold because S is a ring and $1_R = 1_S$. So S is an R-module. It is easy to check that R is a subring of R[x]. So R[x] becomes an R-module in the above way.

Page 248, Q2

Note that the notation (a_i) stands for the sequence $(a_1, a_2, ...)$. It is easy to check that the set S forms an abelian group. We check that other axioms for an R-module all hold. Let $r, r_1, r_2 \in R$ and $(a_i), (b_i) \in S$. Then

$$r((a_i) + (b_i)) = r(a_i + b_i) = (r(a_i + b_i)) = (ra_i + rb_i) = (ra_i) + (rb_i).$$

$$(r_1 + r_2)(a_i) = ((r_1 + r_2)a_i) = (r_1a_i + r_2a_i) = (r_1a_i) + (r_2a_i) = r_1(a_i) + r_2(a_i).$$

$$(r_1r_2)(a_i) = ((r_1r_2)a_i) = (r_1(r_2a_i)) = r_1(r_2(a_i)).$$

$$1_r(a_i) = (1_Ra_i) = (a_i).$$

Hence S is an R-module.

Page 248, Q3

Let M be an additive abelian group and suppose that M is a \mathbb{Z} -module. We show by induction on a that $am=m+m+\cdots+m$ (with a copies of m) for all a>0 and all $m\in M$. By the axioms, we have 1m=m for all $m\in M$. Suppose that $(a-1)m=m+m+\cdots+m$ (with a-1 copies of m) for all $m\in M$. Then $am=(a-1+1)m=(a-1)m+m=m+m+\cdots+m$ (with a copies of m), and the result holds for a. Hence the result holds by induction for all a>0.

We also have 0m = m for all $m \in M$ (as this is true in any module). If a < 0 and $m \in M$ then

$$0 = 0m = (-a + a)m = (-a)m + am,$$

so

$$(-a)m = -(am) = -(m+m+\cdots+m) = -m-m-\cdots-m$$

(with a copies of m). Thus we see that the am is uniquely determined for all $a \in \mathbb{Z}$.

Page 252-3, Q5

Let R be a ring, M an R-module, and

$$I = \{ x \in R : xM = \{0\} \}.$$

Note that

$$xM = \{xm : m \in M\}.$$

Let $x, y \in I$. Then $(x + y)M = xM + yM = \{0\} + \{0\} = \{0\}$, so $x + y \in I$. Let $r \in R$ and $x \in I$. Then $(rx)M = r(xM) = r\{0\} = \{0\}$, so $rx \in I$. And $(xr)M = x(rM) = \{0\}$ since $rM \subseteq M$, so $xr \in I$. Hence I is an ideal of R.

Page 252-3, Q8

Let R be the ring \mathbb{Z} and $M = (\mathbb{Z}, \mathbb{Z})$ the set of pairs of integers. Then M is a \mathbb{Z} module, with r(a,b) = (ra,rb) for all $r,a,b \in \mathbb{Z}$. In fact, M is the external direct sum $\mathbb{Z} \oplus \mathbb{Z}$. Let

$$K = \{(a,0) : a \in \mathbb{Z}\}$$

and

$$K' = \{(0, b) : b \in \mathbb{Z}\}.$$

Let L = K and

$$L' = \{(a, a) : a \in \mathbb{Z}\}.$$

Then it is easy to check that K, K', L, L' are \mathbb{Z} -submodules of M. Furthermore, as we have seen for external direct sums in lectures, M is the (internal) direct sum of the submodules K and K'.

If $(a,b) \in M$ then (a,b) = (a-b,0) + (b,b). If (a,0) + (b,b) = (a',0) + (b',b') then a+b=a'+b' and b=b', so a=b and a'=b'. It follows that M is the direct sum of L and L' also, and we can observe that $K' \neq L'$.

Page 260, Q1

- (a) Firstly, $f(0_M) + f(0_M) = f(0_M + 0_M) = f(0_M)$, so $f(0_M) = 0_N$ and $\ker(f)$ is nonempty. If $m, m' \in \ker(f)$ then $f(m m') = f(m) f(m') = 0_N 0_N = 0_N$. So $\ker(f)$ is a subgroup of M. If $r \in R$ and $m \in \ker(f)$ then $f(rm) = rf(m) = r0_M = 0_M$. (Note that $r0_M + r0_M = r(0_M + 0_M) = r0_M$, so $r0_M = 0_M$). So $rm \in \ker(f)$. Hence $\ker(f)$ is an R-submodule of M.
- (b) Firstly note that $\operatorname{im}(f)$ is nonemmpty since $f(0_M) = 0_N$ lies in $\operatorname{im}(f)$. Let $n, n' \in \operatorname{im}(f)$. Then there are elements $m, m' \in M$ such that f(m) = n and f(n) = n'. So $f(m m') = n n' \in \operatorname{im}(f)$. Let $n \in \operatorname{im}(f)$ and $r \in R$. Then there is $m \in M$ such that f(m) = n. We have $f(rm) = rf(m) = rn \in \operatorname{im}(f)$. Hence $\operatorname{im}(f)$ is an R-submodule of N.

Page 260, Q4

Let M be an R-module and suppose that $x \in M$ satisfies rx = 0 implies r = 0, for $r \in R$. Define $\varphi : {}_RR \to Rx$ by sending r to rx for all $r \in {}_RR$. Then, for $r, s \in {}_RR$, we have

$$\varphi(r+s) = (r+s)x = rx + sx = \varphi(r) + \varphi(s).$$

Let $a\in R$ and $r\in {}_RR$. Then $\varphi(ar)=(ar)x=a(rx)=a\varphi(r)$. So φ is an R-homomorphism.

If $\varphi(r) = 0_M$ then $rx = 0_M$ so r = 0 (by the assumption above). Hence $\ker \varphi = \{0\}$, so φ is one-to-one (see Prop. 3.23 in the lectures). If $y \in Rx$, y = rx for some $r \in R$, so $y = \varphi(r)$. Hence the image of φ is Rx, and φ is an R-isomorphism.

Page 260, Q6

Define a map φ from K' to L' as follows. If $k' \in K'$, it can be written uniquely in the form l + l'. Set $\varphi(k') = l'$. Then φ is well-defined since the decomposition l + l' is unique.

If $k'_0, k'_1 \in K'$ then write $k'_0 = l_0 + l'_0$ and $k'_1 = l_1 + l'_1$. So $k'_0 + k'_1 = l_0 + l'_0 + l_1 + l'_1$ and has unique decomposition $k'_0 + k'_1 = (l_0 + l_1) + (l'_0 + l'_1)$ with $l_0 + l_1 \in L$ and $l'_0 + l'_1 \in L'$. So $\varphi(k'_0 + k'_1) = l'_0 + l'_1 = \varphi(k'_0) + \varphi(k'_1)$.

If $r \in R$, $rk'_0 = r(l_0 + l'_0) = rl_0 + rl'_0$ with $rl_0 \in L$ and $rl'_0 \in L'$, so $\varphi(rk'_0) = rl'_0 = r\varphi(k'_0)$. Hence φ is an R-homomorphism.

If $k' \in \ker \varphi$, then $k' = l + 0 \in L = K$, but $k' \in K'$ also, so k' = 0. Hence φ is one-to-one (see Prop. 3.23 in the lectures). Let $l' \in L'$. Then l' = k + k' for some $k \in K$, $k' \in K'$. So k' = -k + l'. Note that $k \in K = L$ so this is the decomposition of k' as a sum of an element in L and an element in L'. Hence $\varphi(k') = l'$ and we see that φ is onto. Hence φ is an R-isomorphism as required.

Page 260, Q7

Let I be a left ideal of a ring R and let φ be an isomorphism from R/I to R. Let $a=\varphi(1+I)$ and $b+I=\varphi^{-1}(1)$. Then $1=\varphi(b+I)=b\varphi(1+I)=ba$. And $1+I=\varphi^{-1}(a)=a\varphi^{-1}(1)=a(b+I)=ab+I$, so $1-ab\in I$. Then $(ab)^2=abab=ab$ and $(1-ab)^2=1-ab-ab+ab=1-ab$, so ba and 1-ab are idempotents. Since $1-ab\in I$, $R(1-ab)\subseteq I$. If $x\in I$, then x+I=0+I so $0=\varphi(x+I)=\varphi(x(1+I))=x\varphi(1+I)=xa$. Then $x=x1=x(1-ab+ab)=x(1-ab)+xab=x(1-ab)\in R(1-ab)$. Hence I=R(1-ab) and we can take e to be the idempotent 1-ab.

Page 268, Q1

Since $e \neq 0$, $Re \neq \{0\}$ since it contains the non-zero element 1e = e. Let $re \in Re$ be an arbitrary element. We have $(1-e)re = r(1-e)e = r(e-e^2) = 0$. Since $e \neq 1$, $1-e \neq 0$, and it follows that $\{re\}$ is not linearly independent. Hence no non-empty set is a basis for Re. Since $Re \neq 0$, the empty set is not a basis either. So Re does not have a basis, and hence is not a free module.

Page 268, Q3

Let R be a ring and M a free R-module with basis $x_i, i \in \Lambda$. Then every element of M is of the form $\sum_{i \in \Lambda} r_i x_i$, with $r_i \in R$ and finitely many non-zero terms. Hence $R = \sum_{i \in \Lambda} R x_i$. Suppose that $\sum_{i \in \Lambda} r_i x_i = 0$, with $r_i \in R$ for all i and finitely many $r_i x_i \neq 0$. Let

$$\Lambda' = \{ i \in \Lambda : r_i x_i \neq 0 \},$$

a finite set. Then $\sum_{i \in \Lambda'} r_i x_i = 0$, so $r_i = 0$ for all $i \in \Lambda'$. Hence $r_i x_i = 0$ for all $i \in \Lambda$. By Proposition 3.13 from lectures, $R = \bigoplus_{i \in \Lambda} Rx_i$.

We remark for later use that each submodule Rx_i is isomorphic to RR.

Page 268, Q6

Let I be an ideal of \mathbb{Z} , regarded as a (left) \mathbb{Z} -module. Since \mathbb{Z} is a PID, I=(a) for some $a\in\mathbb{Z}$. If a=0, then $I=\{0\}$ and is a free module. If $a\neq 0$, then every element of I is of the form $ra, r\in\mathbb{Z}$, so $\{a\}$ generates I. If ra=0 then, since $a\neq 0, r=0$, so $\{a\}$ is linearly independent. Hence $\{a\}$ is a basis of I and it is a free module in this case also.

Page 268, Q7

Let R be an integral domain and I a principal left ideal in R, regarded as a left R-module. If $I = \{0\}$, it is a free module. If $I \neq \{0\}$, let $a \in R$ be such that I = (a). Note that we must have $a \neq 0$. Then every element of I is of the form ra, so $\{a\}$ is a generating set for I. If ra = 0 then, since $a \neq 0$, we have r = 0 (as R is an integral domain), so $\{a\}$ is also linearly independent. Hence I has a basis, $\{a\}$, so is a free module in this case also. Note that, since $\mathbb Z$ is a PID, the statement in Question 6 on page 268 is implied by the statement in Q7.

R. J. Marsh, 20/09/14.