MA3201 Rings and Modules, 2014
Solution Sheet 3

To be discussed on Friday 3 October and Friday 10 October.

Problems from: Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract
algebra. Second edition. Cambridge University Press, Cambridge, 1994.

Page | Problem number
248 1,2,3
252-3 9, 8

260 1,4,6,7
268 1,3,6,7

Page 248, Q1
Suppose that S is a ring and R a subring of S. Then S is an abelian group.

Furthermore, the axioms:

(1) r(s1 + s2) =rsy +rsg for all r € R, $1,82 € S

(2) (11 +r2)s=ris+rasforallr,rs € R, s€S;

(3) (rire)s =r1(res) for all r,79 € R, s € S,

(4) Igs=sforall s € S.
all hold because S is a ring and 1g = 1g. So S is an R-module. It is easy to check
that R is a subring of R[z]. So R[x] becomes an R-module in the above way.

Page 248, Q2

Note that the notation (a;) stands for the sequence (a1,ase,...). It is easy to
check that the set S forms an abelian group. We check that other axioms for an
R-module all hold. Let r,7,72 € R and (a;), (b;) € S. Then

r((ai) + (bs)) = r(ai + bi) = (r(ai + bi)) = (ra; +rbi) = (ra;) + (rbs).
(7’1 + TQ)(O,Z') = ((7’1 + Tg)ai) = (Tlai + Tgai) = (7’10,1') =+ (7’20,1') = rl(ai) =+ 7’2(0,1').
(rir2)(a;) = ((rir2)ai) = (r1(r2a:)) = r1(r2(a;)).
17.(ai) = (1Rai) = (ai).
Hence S is an R-module.

Page 248, Q3

Let M be an additive abelian group and suppose that M is a Z-module. We
show by induction on a that am = m +m + --- + m (with a copies of m) for all
a > 0 and all m € M. By the axioms, we have 1m = m for all m € M. Suppose
that (a — 1)m =m+m + --- 4+ m (with a — 1 copies of m) for all m € M. Then
am=(a—1+1)m=(a—1)m+m=m+m+---+m (with a copies of m), and
the result holds for a. Hence the result holds by induction for all a > 0.

We also have Om = m for all m € M (as this is true in any module). If a < 0
and m € M then

0=0m=(—a+a)m = (—a)m+ am,
o
(—a)y)m=—(am)=—-(m+m+---+m)=—-m—-m—---—m
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(with a copies of m). Thus we see that the am is uniquely determined for all a € Z.

Page 252-3, Q5
Let R be a ring, M an R-module, and

I={xeR:zM={0}}.

Note that

aM ={xm : m € M}.
Let x,y € I. Then (x +y)M = aM + yM = {0} + {0} = {0}, so z +y € I.
Let r € Rand ¢ € I. Then (ra)M = r(zM) = r{0} = {0}, so ro € I. And
(xr)M = z(rM) = {0} since rM C M, so zr € I. Hence I is an ideal of R.

Page 252-3, Q8
Let R be the ring Z and M = (Z,Z) the set of pairs of integers. Then M is a Z
module, with r(a,b) = (ra,rbd) for all r,a,b € Z. In fact, M is the external direct
sum 7 P 7. Let
K ={(a,0) : a € Z}
and
K' ={(0,b) : beZ}.
Let L = K and
L' ={(a,a) : a € Z}.
Then it is easy to check that K, K’, L, L’ are Z-submodules of M. Furthermore, as
we have seen for external direct sums in lectures, M is the (internal) direct sum of
the submodules K and K’.
If (a,b) € M then (a,b) = (a — b,0) + (b,b). If (a,0) + (b,b) = (a’,0) + (¥, V)
thena+b=a +b and b="0,s0a =0 and a’ =¥'. It follows that M is the direct
sum of L and L’ also, and we can observe that K’ # L'.

Page 260, Q1

(a) Firstly, f(O]\/[) + f(OM) = f(OM + 0]\/[) = f(()]\/[), S0 f(O]\/[) =0y and ker(f)
is nonempty. If m,m’ € ker(f) then f(m —m’) = f(m) — f(m’) =0y — Oy = On.
So ker(f) is a subgroup of M. If r € R and m € ker(f) then f(rm) = rf(m) =
rOp = Opr. (Note that r0pr + 70pr = 7(0ps + Opr) = 70ps, so 70x = 0pr). So
rm € ker(f). Hence ker(f) is an R-submodule of M.

(b) Firstly note that im(f) is nonemmpty since f(0p) = On lies in im(f). Let
n,n’ € im(f). Then there are elements m,m’ € M such that f(m) = n and
f(n)=n'. So f(m —m’) =n —n' € im(f). Let n € im(f) and r € R. Then there
is m € M such that f(m) = n. We have f(rm) = rf(m) = rn € im(f). Hence
im(f) is an R-submodule of N.

Page 260, Q4

Let M be an R-module and suppose that x € M satisfies rz = 0 implies r = 0,
for r € R. Define ¢ : gkR — Rz by sending r to rx for all + € gR. Then, for
r,s € rR, we have

or+8)=(r+s)z=rx+ sz =pr)+ o(s).

Let a € R and r € gR. Then p(ar) = (ar)z = a(rz) = ap(r). So ¢ is an
R-homomorphism.
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If o(r) = 0pr then r& = 0p so r = 0 (by the assumption above). Hence
kerp = {0}, so ¢ is one-to-one (see Prop. 3.23 in the lectures). If y € Ruz,
y = rx for some r € R, so y = (r). Hence the image of ¢ is Rz, and ¢ is an
R-isomorphism.

Page 260, Q6

Define a map ¢ from K’ to L’ as follows. If £’ € K’, it can be written uniquely
in the form [ +1'. Set p(k’) = 1’. Then ¢ is well-defined since the decomposition
I+ 1 is unique.

If k{, k] € K’ then write kj, = lp+1 and k] = 11 +1}. So k{+k| =lo+1{+11+1]
and has unique decomposition k{, + k} = (lo + 1) + (I, +1}) with lp + 11 € L and
b+ el Soplky+ k) =1(+11 = okl + p(k)).

If r € R, rk{ = r(lo + 1) = rlo + rlj with rlyp € L and rljj € L', so ¢(rkj) =
rly = ro(k{). Hence ¢ is an R-homomorphism.

If ¥ e kerp, then ¥ =1+0€ L =K, but k' € K’ also, so k' = 0. Hence ¢ is
one-to-one (see Prop. 3.23 in the lectures). Let I’ € L’. Then I’ = k + k' for some
ke K,k € K'. Sok’ = —k+1'. Note that k € K = L so this is the decomposition
of k' as a sum of an element in L and an element in L’. Hence ¢(k') =1’ and we
see that ¢ is onto. Hence ¢ is an R-isomorphism as required.

Page 260, Q7

Let I be a left ideal of a ring R and let ¢ be an isomorphism from R/I to R.
Let a = o(1+1I)and b+ 1 = o *(1). Then 1 = (b +I) = bp(1 +I) = ba.
And 1+ 1 = ¢ Ya) = ap™'(1) = a(b+ 1) = ab+ 1, s0 1 —ab € I. Then
(ab)? = abab = ab and (1 —ab)? =1 —ab—ab+ ab =1 — ab, so ba and 1 — ab are
idempotents. Since 1 —ab € I, R(1 —ab) CI. If x € I, then x +1 =0+ I so
O=p(xz+1)=¢x(1+1)) =2p(1+1)==xa Then z =2zl =xz(l —ab+ adb) =
(1 — ab) + zab = (1 — ab) € R(1 — ab). Hence I = R(1 — ab) and we can take e
to be the idempotent 1 — ab.

Page 268, Q1

Since e # 0, Re # {0} since it contains the non-zero element le = e. Let re € Re
be an arbitrary element. We have (1 — e)re = r(1 —e)e = r(e — e?) = 0. Since
e#1,1—e# 0, and it follows that {re} is not linearly independent. Hence no
non-empty set is a basis for Re. Since Re # 0, the empty set is not a basis either.
So Re does not have a basis, and hence is not a free module.

Page 268, Q3

Let R be a ring and M a free R-module with basis x;,7 € A. Then every element
of M is of the form } 7, r;x;, with r; € R and finitely many non-zero terms. Hence
R =7},cn Rx;. Suppose that ), \ riw; = 0, with r; € R for all 7 and finitely many
rix; # 0. Let

N ={ieA : rz; #0},

a finite set. Then ZieA, r;z; = 0,50 r; =0 for all 4 € A’. Hence r;xz; = 0 for all
i € A. By Proposition 3.13 from lectures, R = @, , Rx;.
We remark for later use that each submodule Rz; is isomorphic to g R.

Page 268, Q6



Let I be an ideal of Z, regarded as a (left) Z-module. Since Z is a PID, I = (a)
for some a € Z. If a = 0, then I = {0} and is a free module. If a # 0, then every
element of I is of the form ra, r € Z, so {a} generates I. If ra = 0 then, since
a#0,r=0,so {a} is linearly independent. Hence {a} is a basis of I and it is a
free module in this case also.

Page 268, Q7
Let R be an integral domain and I a principal left ideal in R, regarded as a left
R-module. If I = {0}, it is a free module. If I # {0}, let a € R be such that
I = (a). Note that we must have a # 0. Then every element of T is of the form ra,
so {a} is a generating set for I. If ra = 0 then, since a # 0, we have r =0 (as R is
an integral domain), so {a} is also linearly independent. Hence I has a basis, {a},
so is a free module in this case also. Note that, since Z is a PID, the statement in
Question 6 on page 268 is implied by the statement in Q7.
R. J. Marsh, 20/09/14.



