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Page 248, Q1

Suppose that S is a ring and R a subring of S. Then S is an abelian group.
Furthermore, the axioms:

(1) r(s1 + s2) = rs1 + rs2 for all r ∈ R, s1, s2 ∈ S;
(2) (r1 + r2)s = r1s+ r2s for all r1, r2 ∈ R, s ∈ S;
(3) (r1r2)s = r1(r2s) for all r1, r2 ∈ R, s ∈ S;
(4) 1Rs = s for all s ∈ S.

all hold because S is a ring and 1R = 1S. So S is an R-module. It is easy to check
that R is a subring of R[x]. So R[x] becomes an R-module in the above way.

Page 248, Q2

Note that the notation (ai) stands for the sequence (a1, a2, . . .). It is easy to
check that the set S forms an abelian group. We check that other axioms for an
R-module all hold. Let r, r1, r2 ∈ R and (ai), (bi) ∈ S. Then

r((ai) + (bi)) = r(ai + bi) = (r(ai + bi)) = (rai + rbi) = (rai) + (rbi).

(r1 + r2)(ai) = ((r1 + r2)ai) = (r1ai + r2ai) = (r1ai) + (r2ai) = r1(ai) + r2(ai).

(r1r2)(ai) = ((r1r2)ai) = (r1(r2ai)) = r1(r2(ai)).

1r(ai) = (1Rai) = (ai).

Hence S is an R-module.

Page 248, Q3

Let M be an additive abelian group and suppose that M is a Z-module. We
show by induction on a that am = m + m + · · · +m (with a copies of m) for all
a > 0 and all m ∈ M . By the axioms, we have 1m = m for all m ∈ M . Suppose
that (a − 1)m = m +m + · · · +m (with a − 1 copies of m) for all m ∈ M . Then
am = (a− 1 + 1)m = (a− 1)m+m = m+m+ · · ·+m (with a copies of m), and
the result holds for a. Hence the result holds by induction for all a > 0.

We also have 0m = m for all m ∈ M (as this is true in any module). If a < 0
and m ∈ M then

0 = 0m = (−a+ a)m = (−a)m+ am,

so
(−a)m = −(am) = −(m+m+ · · ·+m) = −m−m− · · · −m
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(with a copies of m). Thus we see that the am is uniquely determined for all a ∈ Z.

Page 252-3, Q5

Let R be a ring, M an R-module, and

I = {x ∈ R : xM = {0}}.

Note that

xM = {xm : m ∈ M}.

Let x, y ∈ I. Then (x + y)M = xM + yM = {0} + {0} = {0}, so x + y ∈ I.
Let r ∈ R and x ∈ I. Then (rx)M = r(xM) = r{0} = {0}, so rx ∈ I. And
(xr)M = x(rM) = {0} since rM ⊆ M , so xr ∈ I. Hence I is an ideal of R.

Page 252-3, Q8

Let R be the ring Z and M = (Z,Z) the set of pairs of integers. Then M is a Z

module, with r(a, b) = (ra, rb) for all r, a, b ∈ Z. In fact, M is the external direct
sum Z ⊕ Z. Let

K = {(a, 0) : a ∈ Z}

and

K ′ = {(0, b) : b ∈ Z}.

Let L = K and

L′ = {(a, a) : a ∈ Z}.

Then it is easy to check that K,K ′, L, L′ are Z-submodules of M . Furthermore, as
we have seen for external direct sums in lectures, M is the (internal) direct sum of
the submodules K and K ′.

If (a, b) ∈ M then (a, b) = (a − b, 0) + (b, b). If (a, 0) + (b, b) = (a′, 0) + (b′, b′)
then a+ b = a′ + b′ and b = b′, so a = b and a′ = b′. It follows that M is the direct
sum of L and L′ also, and we can observe that K ′ 6= L′.

Page 260, Q1

(a) Firstly, f(0M ) + f(0M ) = f(0M + 0M ) = f(0M ), so f(0M ) = 0N and ker(f)
is nonempty. If m,m′ ∈ ker(f) then f(m−m′) = f(m)− f(m′) = 0N − 0N = 0N .
So ker(f) is a subgroup of M . If r ∈ R and m ∈ ker(f) then f(rm) = rf(m) =
r0M = 0M . (Note that r0M + r0M = r(0M + 0M ) = r0M , so r0M = 0M ). So
rm ∈ ker(f). Hence ker(f) is an R-submodule of M .

(b) Firstly note that im(f) is nonemmpty since f(0M ) = 0N lies in im(f). Let
n, n′ ∈ im(f). Then there are elements m,m′ ∈ M such that f(m) = n and
f(n) = n′. So f(m−m′) = n− n′ ∈ im(f). Let n ∈ im(f) and r ∈ R. Then there
is m ∈ M such that f(m) = n. We have f(rm) = rf(m) = rn ∈ im(f). Hence
im(f) is an R-submodule of N .

Page 260, Q4

Let M be an R-module and suppose that x ∈ M satisfies rx = 0 implies r = 0,
for r ∈ R. Define ϕ : RR → Rx by sending r to rx for all r ∈ RR. Then, for
r, s ∈ RR, we have

ϕ(r + s) = (r + s)x = rx + sx = ϕ(r) + ϕ(s).

Let a ∈ R and r ∈ RR. Then ϕ(ar) = (ar)x = a(rx) = aϕ(r). So ϕ is an
R-homomorphism.
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If ϕ(r) = 0M then rx = 0M so r = 0 (by the assumption above). Hence
kerϕ = {0}, so ϕ is one-to-one (see Prop. 3.23 in the lectures). If y ∈ Rx,
y = rx for some r ∈ R, so y = ϕ(r). Hence the image of ϕ is Rx, and ϕ is an
R-isomorphism.

Page 260, Q6

Define a map ϕ from K ′ to L′ as follows. If k′ ∈ K ′, it can be written uniquely
in the form l + l′. Set ϕ(k′) = l′. Then ϕ is well-defined since the decomposition
l+ l′ is unique.

If k′0, k
′

1 ∈ K ′ then write k′0 = l0+ l′0 and k′1 = l1+ l′1. So k′0+k′1 = l0+ l′0+ l1+ l′1
and has unique decomposition k′0 + k′1 = (l0 + l1) + (l′0 + l′1) with l0 + l1 ∈ L and
l′0 + l′1 ∈ L′. So ϕ(k′0 + k′1) = l′0 + l′1 = ϕ(k′0) + ϕ(k′1).

If r ∈ R, rk′0 = r(l0 + l′0) = rl0 + rl′0 with rl0 ∈ L and rl′0 ∈ L′, so ϕ(rk′0) =
rl′0 = rϕ(k′0). Hence ϕ is an R-homomorphism.

If k′ ∈ kerϕ, then k′ = l + 0 ∈ L = K, but k′ ∈ K ′ also, so k′ = 0. Hence ϕ is
one-to-one (see Prop. 3.23 in the lectures). Let l′ ∈ L′. Then l′ = k + k′ for some
k ∈ K, k′ ∈ K ′. So k′ = −k+ l′. Note that k ∈ K = L so this is the decomposition
of k′ as a sum of an element in L and an element in L′. Hence ϕ(k′) = l′ and we
see that ϕ is onto. Hence ϕ is an R-isomorphism as required.

Page 260, Q7

Let I be a left ideal of a ring R and let ϕ be an isomorphism from R/I to R.
Let a = ϕ(1 + I) and b + I = ϕ−1(1). Then 1 = ϕ(b + I) = bϕ(1 + I) = ba.
And 1 + I = ϕ−1(a) = aϕ−1(1) = a(b + I) = ab + I, so 1 − ab ∈ I. Then
(ab)2 = abab = ab and (1 − ab)2 = 1− ab− ab + ab = 1 − ab, so ba and 1 − ab are
idempotents. Since 1 − ab ∈ I, R(1 − ab) ⊆ I. If x ∈ I, then x + I = 0 + I so
0 = ϕ(x + I) = ϕ(x(1 + I)) = xϕ(1 + I) = xa. Then x = x1 = x(1 − ab + ab) =
x(1 − ab) + xab = x(1 − ab) ∈ R(1 − ab). Hence I = R(1 − ab) and we can take e
to be the idempotent 1− ab.

Page 268, Q1

Since e 6= 0, Re 6= {0} since it contains the non-zero element 1e = e. Let re ∈ Re
be an arbitrary element. We have (1 − e)re = r(1 − e)e = r(e − e2) = 0. Since
e 6= 1, 1 − e 6= 0, and it follows that {re} is not linearly independent. Hence no
non-empty set is a basis for Re. Since Re 6= 0, the empty set is not a basis either.
So Re does not have a basis, and hence is not a free module.

Page 268, Q3

Let R be a ring and M a free R-module with basis xi, i ∈ Λ. Then every element
ofM is of the form

∑
i∈Λ

rixi, with ri ∈ R and finitely many non-zero terms. Hence
R =

∑
i∈Λ

Rxi. Suppose that
∑

i∈Λ
rixi = 0, with ri ∈ R for all i and finitely many

rixi 6= 0. Let

Λ′ = {i ∈ Λ : rixi 6= 0},

a finite set. Then
∑

i∈Λ′ rixi = 0, so ri = 0 for all i ∈ Λ′. Hence rixi = 0 for all
i ∈ Λ. By Proposition 3.13 from lectures, R =

⊕
i∈Λ

Rxi.
We remark for later use that each submodule Rxi is isomorphic to RR.

Page 268, Q6
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Let I be an ideal of Z, regarded as a (left) Z-module. Since Z is a PID, I = (a)
for some a ∈ Z. If a = 0, then I = {0} and is a free module. If a 6= 0, then every
element of I is of the form ra, r ∈ Z, so {a} generates I. If ra = 0 then, since
a 6= 0, r = 0, so {a} is linearly independent. Hence {a} is a basis of I and it is a
free module in this case also.

Page 268, Q7

Let R be an integral domain and I a principal left ideal in R, regarded as a left
R-module. If I = {0}, it is a free module. If I 6= {0}, let a ∈ R be such that
I = (a). Note that we must have a 6= 0. Then every element of I is of the form ra,
so {a} is a generating set for I. If ra = 0 then, since a 6= 0, we have r = 0 (as R is
an integral domain), so {a} is also linearly independent. Hence I has a basis, {a},
so is a free module in this case also. Note that, since Z is a PID, the statement in
Question 6 on page 268 is implied by the statement in Q7.

R. J. Marsh, 20/09/14.


