
MA3201 Rings and Modules, 2014

Solution Sheet 4

To be discussed on Friday 17 October and Friday 24 October.

Problems from: Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract
algebra. Second edition. Cambridge University Press, Cambridge, 1994.

Page Problem number
381 1
381 3
381 8 (challenge question)
381 9 (assume D is a field)
388 1 (Use the Wedderburn-Artin theorem)

Page 381-2, Q1
We consider the case of modules first. Suppose R is a ring and M = ⊕n

i=1Mi is a
direct sum of n noetherian submodulesM1,M2, . . . ,Mn. ThenM is noetherian. We
prove this by induction on n. It is clear that the case n = 1 is true, so suppose the
result is true for smaller n. Then M1⊕· · ·⊕Mn−1 is noetherian. It is easy to check
that the map ϕ : M → Mn mapping an element m ∈ M written m = m1+ · · ·+mn

with mi ∈ Mi to mn is a ring homomorphism. Its image is Mn and its kernel is
M1 ⊕ · · · ⊕Mn−1, both of which are noetherian, by assumption and the inductive
hypothesis respectively. By the Fundamental Theorem of Homomorphisms,

M1 ⊕ · · · ⊕Mn

M1 ⊕ · · · ⊕Mn−1

∼= Mn.

Hence, by Theorem 4.18 in lectures, M itself is noetherian. The result follows by
induction.

For the case of rings, it is clear that the case n = 1 is true. Suppose that the
result is true for smaller n. Let S = R1 ⊕ · · · ⊕Rn. For 1 ≤ i ≤ n, let

R′
i = {(r1, . . . , rn) ∈ S : rj = 0 for j 6= i, ri ∈ Ri}.

Then it is easy to check that R′
i is an S-submodule of S. We can also make Ri into

an S-module by setting (r1, . . . , rn)x = rix for all x ∈ Ri. The map ϕi : Ri → S
taking ri to (0, . . . , 0, ri, 0, . . . , 0) (with ri in the ith position) is easily seen to be
an S-isomorphism. The S-submodules of Ri coincide with the Ri-submodules of
Ri as a left Ri-module. Since Ri is left noetherian, Ri is a noetherian S-module,
hence so is R′

i. By the above, the direct sum R′
1 ⊕ · · · ⊕ R′

n = S is a noetherian
S-module as required.

Page 381-2, Q3
Let R be a principal left ideal ring, i.e. every left ideal of R is principal (see page

183). Then every left ideal of R is finitely generated (in fact, generated by a single
element), so, by Corollary 4.17 from lectures, R is left noetherian.
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Page 381-2, Q8
Let a ∈ R, a 6= 0. Consider the descending sequence of left ideals of R:

Ra ⊇ Ra2 ⊇ · · · .

Since R is artinian, there is some k such that Rak = Rak+1, so ak = bak+1 for some
b ∈ R. Hence (1 − ba)ak = 0. Since a 6= 0 and R is an integral domain, ak 6= 0, so
1− ba = 0 and ba = 1. Then (ab)a = a(ba) = a1 = a. So, since a 6= 0, ab = 1, and
b is an inverse for a. Since R 6= {0}, it is a division ring.

Page 381-2, Q9
We assume that D = F is a field, so R is a vector space over F. Any left ideal

of R is closed under left multiplication by elements of F, so it is a left F-module.
Hence it is an F-subspace of R. Therefore any descending chain

I1 ⊇ I2 ⊇ · · ·

of left ideals of R is a descending chain of F-subspaces of R. Since R is finite
dimensional as a vector space over F, there is some k such that Ii = Ik for all i ≥ k.
Hence R is left artinian.

Page 388, Q1
LetR be a left artinian ring with no nonzero nilpotent ideals. By the Wedderburn-

Artin theorem, R has the form R ∼= Mn1
(D1) × · · ·Mnk

(Dk) for division rings
D1, . . . , Dk. We have seen from lectures that the only ideals of Mn(D) for a divi-
sion ring D are {0} and Mn(D) itself. Hence the ideal I is of the form I1 × · · · × Ik
where each Ii is either {0} or Mni

(Di). Therefore R/I is isomorphic to a direct
product of matrix rings over division rings. By the Wedderburn-Artin theorem,
R/I is artinian with no nonzero nilpotent ideals.

Problem 1(a)
For i ∈ Λ, let bi = (rj)j∈Λ, where rj = 1 if j = i and rj = 0 otherwise. We

will show that the bi form a basis of M . If r = (ri) ∈ M , then r =
∑

i∈Λ,ri 6=0 ribi,

so the bi generate M . Suppose r =
∑

i∈Λ′ ribi = 0 for some finite subset Λ′ of Λ.
Then r = (r′i) where r′i = ri if i ∈ Λ′ and r′i = 0 otherwise. So ri = 0 for all i ∈ Λ′.
So the bi are linearly independent and therefore form a basis. Hence M is a free
R-module. It is often denoted R(Λ).

Problem 1(b) Let F be the free module R(M) given by part (a), taking Λ = M .
Define a map ϕ : F → M taking (rm)m∈M to

∑
m∈M rmm. It is easy to check that

ϕ is an R-homomorphism. Since ϕ(bm) = m, it is onto. Applying the Fundamental
theorem of module homomorphisms to ϕ, we see that M is isomorphic to a quotient
of F .

If M is finitely generated, let x1, . . . , xk be a generating set and take Λ =
{1, . . . , k}, so F = Rk. Define ϕ : F → M by sending bi to xi. It is easy to
check that ϕ is an R-homomorphism. Since x1, . . . , xk lie in the image, it is onto.

Problem 2
By Problem 1, M is isomorphic to a quotient of Rk for some k. Since R is noe-

therian, Rk is a left noetherian R-module (by p381, Q1). Hence M is a noetherian
R-module (by Theorem 4.18 in lectures).
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Problem 3
It is easy to check that defining r(aij) = (raij) makes Mn(R) into an R-module.

Furthermore, it is finitely generated, by the elementary matricesEij for 1 ≤ i, j ≤ n,
so by Problem 2, Mn(R) is a noetherian R-module. Any left ideal of Mn(R) must
be an R-submodule, since r(aij) = D(aij) where D is the diagonal matrix with r
in each diagonal position and zeros elsewhere. Hence any increasing sequence

I1 ⊆ I2 ⊆ · · ·

of left ideals of Mn(R) is a sequence of R-submodules of Mn(R) and therefore there
is some k such that Ik = Ii for all i ≥ k.

Problem 4
Write M =

∑
i∈Λ Mi, where each Mi is a simple submodule of M . By Theorem

4.8 in lectures, we can write

M = N ⊕
⊕

i∈Λ′

Mi,

where Λ′ is a subset of Λ. Then M/N is isomorphic to
⊕

i∈Λ′

Mi

and hence is semisimple.
If every R-module is semisimple, then RR, which is an R-module, is semisimple.

Conversely, suppose that RR is semisimple, and suppose that M is an R-module.
By Problem 1(b), M is a quotient of a free module F . The module F is a direct
sum of modules, each of which is isomorphic to RR (use Q3, p268). Since each of
these modules is semisimple, so is F , and hence so is M , since it is a quotient of
M , using the above.

Problem 5
Let R be a ring and suppose that RR is semisimple. Then R is a sum of minimal

left ideals. By Corollary 4.10 in lectures, R is a direct sum of minimal left ideals,

RR =
⊕

i∈Λ Ii. We delete any zero terms in the direct sum (since they do not affect
the sum). Write 1 = x1 + · · · + xk where xt ∈ Iit for i1, . . . , ik ∈ Λ. Then any
element r ∈ R can be written as

r = r1 = rx1 + · · · rxk,

with rxt ∈ Iit . If i ∈ Λ \ {i1, . . . , ik} then, since Ii 6= 0, Ii ∩ R 6= {0}, so Ii ∩∑k

t=1 Iit 6= {0}, contradicting Proposition 3.13 in lectures. So Λ = {i1, . . . , it} and
we see that R is a finite direct sum of minimal left ideals as required.

Problem 6
Let α be the arrow from 1 to 2 and β the arrow from 2 to 3. Then we have seen

(Problem 3 on Problem Sheet 1) that the subspace spanned by α, β, βα is an ideal
I of FQ. It is easy to check that any product of two of these elements is zero, so the
same is true for any linear combination and we see that I is nilpotent. It is easy to
check that R = FQ/I is isomorphic to F×F×F, which as a left F×F×F-module is
the sum of the simple F×F×F- submodules {0}×F×F, F×{0}×F and F×F×{0}
and hence is semisimple.
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Problem 7
If p, q ∈ Z with q 6= 0, then Z

p
q
6= Q (since 1

2q 6∈ Z
p
q
). So any basis must have at

least two nonzero elements, say p/q and r/s, with p, q, r, s ∈ Z and q, s 6= 0. But
then rq p

q
− ps r

s
= rp− pr = 0, so p/q and r/s are not linearly independent.

R. J. Marsh, 5/10/14.


