MA3201 Rings and Modules, 2014
Solution Sheet 4

To be discussed on Friday 17 October and Friday 24 October.

Problems from: Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract
algebra. Second edition. Cambridge University Press, Cambridge, 1994.

Page Problem number

381 1

381 3

381 8 (challenge question)

381 9 (assume D is a field)

388 | 1 (Use the Wedderburn-Artin theorem)

Page 381-2, Q1

We consider the case of modules first. Suppose R is a ring and M = @] M, is a
direct sum of n noetherian submodules My, Ms, ..., M,,. Then M is noetherian. We
prove this by induction on n. It is clear that the case n = 1 is true, so suppose the
result is true for smaller n. Then M; ®---® M,,_1 is noetherian. It is easy to check
that the map ¢ : M — M,, mapping an element m € M written m = my +---+m,,
with m; € M; to m, is a ring homomorphism. Its image is M,, and its kernel is
M & - @ M,_1, both of which are noetherian, by assumption and the inductive
hypothesis respectively. By the Fundamental Theorem of Homomorphisms,

My & & M,
M @& M, _,

=~ M,.

Hence, by Theorem 4.18 in lectures, M itself is noetherian. The result follows by
induction.

For the case of rings, it is clear that the case n = 1 is true. Suppose that the
result is true for smaller n. Let S=R;1 ®---® R,,. For 1 <i <n, let

R, ={(r1,...,mn) €S : rj=0for j #i,7; € R;}.

Then it is easy to check that R] is an S-submodule of S. We can also make R; into
an S-module by setting (r1,...,7,)z = r;z for all z € R;. The map ¢; : R; — S
taking r; to (0,...,0,7;,0,...,0) (with r; in the ith position) is easily seen to be
an S-isomorphism. The S-submodules of R; coincide with the R;-submodules of
R; as a left R;-module. Since R; is left noetherian, R; is a noetherian S-module,
hence so is R;. By the above, the direct sum R] @ --- @ R, = S is a noetherian
S-module as required.

Page 381-2, Q3
Let R be a principal left ideal ring, i.e. every left ideal of R is principal (see page
183). Then every left ideal of R is finitely generated (in fact, generated by a single
element), so, by Corollary 4.17 from lectures, R is left noetherian.
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Page 381-2, Q8
Let a € R, a # 0. Consider the descending sequence of left ideals of R:

RaD Ra®>D---.

Since R is artinian, there is some k such that Ra* = Ra**1, so a¥ = ba**! for some

b € R. Hence (1 — ba)a® = 0. Since a # 0 and R is an integral domain, a* # 0, so
1—ba =0 and ba = 1. Then (ab)a = a(ba) = al = a. So, since a # 0, ab =1, and
b is an inverse for a. Since R # {0}, it is a division ring.

Page 381-2, Q9

We assume that D = F is a field, so R is a vector space over F. Any left ideal
of R is closed under left multiplication by elements of F, so it is a left F-module.
Hence it is an F-subspace of R. Therefore any descending chain
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of left ideals of R is a descending chain of F-subspaces of R. Since R is finite
dimensional as a vector space over F, there is some k such that I; = I for all ¢ > k.
Hence R is left artinian.

Page 388, Q1

Let R be a left artinian ring with no nonzero nilpotent ideals. By the Wedderburn-
Artin theorem, R has the form R = M,,(D1) x --- M,, (Dy) for division rings
Dy, ..., Di. We have seen from lectures that the only ideals of M,, (D) for a divi-
sion ring D are {0} and M, (D) itself. Hence the ideal I is of the form Iy x --- x I},
where each I; is either {0} or M,,(D;). Therefore R/I is isomorphic to a direct
product of matrix rings over division rings. By the Wedderburn-Artin theorem,
R/I is artinian with no nonzero nilpotent ideals.

Problem 1(a)

For ¢ € A, let b; = (rj)jen, where r; = 1 if j = ¢ and r; = 0 otherwise. We
will show that the b; form a basis of M. If r = (r;) € M, then r = Ez‘e/\,m;&o r;b;,
so the b; generate M. Suppose r = ) ;.\, 7ib; = 0 for some finite subset A’ of A.
Then r = (r;) where r; = r; if i € A’ and r} = 0 otherwise. So r; =0 for all i € A'.
So the b; are linearly independent and therefore form a basis. Hence M is a free
R-module. It is often denoted R,

Problem 1(b) Let F be the free module R™) given by part (a), taking A = M.
Define a map ¢ : F — M taking (7 )menr t0 Y, cps Tmm. It is easy to check that
¢ is an R-homomorphism. Since ¢(b,,) = m, it is onto. Applying the Fundamental
theorem of module homomorphisms to ¢, we see that M is isomorphic to a quotient
of F.

If M is finitely generated, let x1,...,zr be a generating set and take A =
{1,...,k}, so F = R*. Define ¢ : F — M by sending b; to x;. It is easy to
check that ¢ is an R-homomorphism. Since z1, ...,z lie in the image, it is onto.

Problem 2

By Problem 1, M is isomorphic to a quotient of R* for some k. Since R is noe-
therian, R* is a left noetherian R-module (by p381, Q1). Hence M is a noetherian
R-module (by Theorem 4.18 in lectures).



Problem 3

It is easy to check that defining r(a;;) = (ra;;) makes M, (R) into an R-module.
Furthermore, it is finitely generated, by the elementary matrices E;; for 1 <4,5 < n,
so by Problem 2, M, (R) is a noetherian R-module. Any left ideal of M, (R) must
be an R-submodule, since 7(a;;) = D(a;;) where D is the diagonal matrix with r
in each diagonal position and zeros elsewhere. Hence any increasing sequence
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of left ideals of M, (R) is a sequence of R-submodules of M,,(R) and therefore there
is some k such that I = I; for all i > k.

Problem 4
Write M = ),y M;, where each M; is a simple submodule of M. By Theorem
4.8 in lectures, we can write

M=Na P M,
Y

where A’ is a subset of A. Then M/N is isomorphic to

P
€N’
and hence is semisimple.

If every R-module is semisimple, then g R, which is an R-module, is semisimple.
Conversely, suppose that g R is semisimple, and suppose that M is an R-module.
By Problem 1(b), M is a quotient of a free module F. The module F' is a direct
sum of modules, each of which is isomorphic to gR (use Q3, p268). Since each of
these modules is semisimple, so is F', and hence so is M, since it is a quotient of
M, using the above.

Problem 5

Let R be a ring and suppose that zR is semisimple. Then R is a sum of minimal
left ideals. By Corollary 4.10 in lectures, R is a direct sum of minimal left ideals,
rR =@, Ii. We delete any zero terms in the direct sum (since they do not affect
the sum). Write 1 = xy + --- + a, where 2y € I, for 41,...,4x € A. Then any
element r € R can be written as

r=rl=rxy+ - rog,

with rry € Iit- Ifi e A \ {il,. .. ,ik} then, since 11 7& 0, Iz NR 7é {0}, SO Iz N
Zle I;, # {0}, contradicting Proposition 3.13 in lectures. So A = {é1,...,4:} and
we see that R is a finite direct sum of minimal left ideals as required.

Problem 6

Let a be the arrow from 1 to 2 and 3 the arrow from 2 to 3. Then we have seen
(Problem 3 on Problem Sheet 1) that the subspace spanned by «, 3, Sc is an ideal
I of FQ). It is easy to check that any product of two of these elements is zero, so the
same is true for any linear combination and we see that I is nilpotent. It is easy to
check that R = FQ/I is isomorphic to F x F x F, which as a left F x F x F-module is
the sum of the simple F x F x F- submodules {0} xF xF, Fx {0} xF and F xF x {0}
and hence is semisimple.



Problem 7

If p,q € Z with ¢ # 0, then Z% # Q (since % Z Z%). So any basis must have at
least two nonzero elements, say p/q and r/s, with p,q,r,s € Z and ¢,s # 0. But
then rq2 —ps% =rp — pr =0, so p/q and r/s are not linearly independent.

R. J. Marsh, 5/10/14.



