
MA3201 Rings and Modules, 2014

Solution Sheet 5

To be discussed on Friday 31 October and Friday 7 November.

Problems from old exams.

Exam Problem number
2012 2, 4
2011 2
2009 4

Note: some details in the answers have been omitted.

Exam 2012, Problem 2.

We check that X −X ′ ∈ I for all X,X ′ ∈ I and AX ∈ I and XA ∈ I for all A ∈ R and

X ∈ I, to see that I is an ideal of R. Details omitted.

We have:
(

1 0
0 0

)(

0 0
1 0

)

=

(

0 0
0 0

)

,

(

0 0
1 0

)(

1 0
0 0

)

=

(

0 0
1 0

)

,

so R is not commutative.

The ring R is an R-algebra, with

λ

(

a 0
b c

)

=

(

λa 0
λb λc

)

for λ ∈ R. A basis for R over R is given by the elementary matrices E11, E21 and E22, so

it is finite-dimensional over R. Hence it is artinian and noetherian.

If X is an arbitrary matrix in I, then X2 = 0, so I is a nilpotent ideal, which is also

nonzero. Hence R has a nonzero nilpotent ideal, so it is not semisimple.

Define ϕ : R → R × R, setting ϕ(X) = (a, c) for X =

(

a 0
b c

)

∈ R. Then it can be

checked that ϕ is an onto ring homomorphism, with kernel I. Applying the fundamental

theorem of homomorphisms, we have that R/ kerϕ ∼= imϕ. Hence R/I ∼= R × R. So we

can answer the question about R/I by answering it for the isomorphic ring S = R× R.

Since R is commutative, we have (a, b)(c, d) = (ac, bd) = (ca, db) = (c, d)(a, b) for

a, b, c, d ∈ R. Hence R/I is commutative.

The ring R × R is also an R-algebra, with λ(a, b) = (λa, λb) for λ ∈ R, with basis

{(1, 0), (0, 1)}. So it is a finite-dimensional R-algebra, and hence artinian and noetherian.

We can write R×R as a direct sum of X1 = (R, 0) and X2 = (0,R). Each of these can

be seen to be minimal left ideals of S, and hence simple submodules of SS. It follows that

S (and hence R/I) is semisimple.

Let

m1 =

(

R 0
R 0

)

.

Then it can be checked that m1 is an ideal of R. Consider the map α : R → R, defined

by α(X) = c for X =

(

a 0
b c

)

∈ R. Then α is a ring homomorphism with kernel m1 and

image R. By the fundamental theorem of homomorphisms, R/m1
∼= R, which is a field.

Hence m1 is a maximal ideal of R. We set

m2 =

(

0 0
R R

)

;
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a similar argument shows that m2 is a maximal ideal. It is easy to check that m1∩m2 = I.

Let m be a maximal ideal of R and suppose m contains a matrix

(

a 0
b c

)

with a 6= 0.

Then, for any λ, µ ∈ R, m also contains the matrix
(

λ/a 0
µ/a 0

)(

a 0
b c

)

=

(

λ 0
µ 0

)

and hence containsm1, so it must be equal tom1. Similarly, ifm contains a matrix

(

a 0
b c

)

with c 6= 0 then, by multiplying this matrix on the right by an appropriate matrix, we see

that m contains m2 and so must be equal to m2. The only possibility left is that m ⊆ I.

But then m ⊆ m1 and m 6= m1, so we have a contradiction. It follows that the only

maximal ideals of R are m1 and m2.

We claim that m1 is a maximal left ideal of R. Let I be a left ideal of R containing m1

but not equal to m1. Then I contains a matrix

(

a 0
b c

)

with c 6= 0. Hence, for any λ ∈ R,

I contains the matrix
(

0 0
0 λ/c

)(

a 0
b c

)

=

(

0 0
λb/c λ

)

.

Since it contains m1, it contains the matrix:
(

0 0
−λb/c 0

)

+

(

0 0
−λb/c λ

)

=

(

0 0
0 λ

)

.

Hence, since it is closed under addition and contains m1, it is equal to R. So m1 is a

maximal left ideal of R. A similar argument shows that m2 is also a maximal left ideal of

R.

Hence the only R-submodules of RR containing m1 are m1 and R, so, by the correspon-

dence theorem, the only R-submodules of S1 = (RR)/m1 are the zero submodule and S1
itself, so it is a simple R-module. Similarly, S2 = RR/m2 is a simple R-module.

Suppose that f : S1 → S2 was an isomorphism. Let

(

y 0
0 0

)

+ m2 be the image of
(

0 0
0 1

)

+m1. Then

f

((

0 0
0 1

)((

0 0
0 1

)

+m1

))

= f

((

0 0
0 1

)

+m1

)

=

(

y 0
0 0

)

+m2.

The left hand side must also be equal to
(

0 0
0 1

)

f

((

0 0
0 1

)

+m1

)

=

(

0 0
0 1

)((

y 0
0 0

)

+m2

)

=

(

0 0
0 0

)

+m2.

So y = 0, but

f

((

0 0
0 0

)

+m1

)

=

(

0 0
0 0

)

+m2,

so f is not a bijection, a contradiction.

Hence S1 and S2 are nonisomorphic simple R-modules as required.

Exam 2012, Problem 4.

For part (a), suppose that M is a noetherian R module. Assume, for a contradiction,

that M contains a submodule N which is not finitely generated. Choose an element

m1 ∈ N . Then Rm1 ⊆ N , but Rm1 6= N since N is not finitely generated. Choose

m2 ∈ N \Rm2. Then we have that the submodule generated by m1 and m2 is contained

in N , but we do not have equality since N is not finitely generated. Repeating this

argument, we obtain an ascending sequence of distinct submodules of N (and hence of
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M), contradicting the assumption that M is noetherian. Hence every submodule of N is

finitely generated.

For part (b), suppose that M is a noetherian and artinian R-module. Let M0 = M .

Suppose that M 6= {0M}. Then the set of submodules of M not equal to M is nonempty

(it contains {0M}). SinceM is noetherian, this set contains a maximal element, M1. Since

M1 is a maximal submodule of M , the only submodules of M containing M1 are M1 and

M itself. By the correspondence theorem, the only submodules of M/M1 are M1/M1 and

M/M1. Also, M 6=M1, so M/M1 is not a zero module, so it is a simple R-module.

IfM1 is not equal to zero, then the set of submodules ofM1 not equal toM1 is nonempty

(containing the zero submodule). Hence, using again the fact that M is noetherian, the

set of submodules of M1 not equal to M1 has a maximal element, M2. As before, M1/M2

is a simple R-module.

We repeat the argument. Suppose that Mn 6= {0} for all n ≥ 0. Then we obtain a

decreasing sequence

M =M0 ⊇M1 ⊇M2 ⊇ · · ·

of distinct submodules of M , contradicting the fact that M is artinian. Hence, there must

be some n such that Mn = 0, and we obtain the required sequence

M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0},

such that Mi/Mi+1 is simple for each i.

Consider the ring R = Z and the Z-module ZZ. Since Z is a PID, every left ideal of

Z is finitely generated, so ZZ is a noetherian Z-module. We have the strictly decreasing

sequence

(2) ⊇ (22) ⊇ (23) ⊇ · · ·

of submodules of ZZ, so it is not artinian.

Suppose that

ZZ =M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}

was a finite decreasing sequence of submodules of ZZ. Then, since Z is a PID, there is

a ∈ Z such that Mn−1 = (a). But then (2a) is a submodule of Mn−1 which is not equal

to Mn−1 or {0}, so Mn−1 (and hence Mn−1/Mn = Mn−1/{0}) is not a simple Z-module.

So there cannot be such a finite sequence in which all the quotients Mi/Mi+1 are simple

Z-modules.

Exam 2011, Problem 2.

Part (a): to check that R is a subring of M3(F) we show that AB ∈ R and A−B ∈ R

for all A,B ∈ R, and also that the identity matrix lies in R. Details omitted.

Part (b): to check that I1 and I2 are ideals of R, we check that X − Y ∈ I for all

X,Y ∈ I, and AX,XA ∈ I for all A ∈ R and X ∈ I. Details omitted.

Part (c): To answer this, could choose three of the following:

(a) R is left artinian with no non-zero nilpotent ideals.

(b) R is left artinian with no non-zero nil ideals.

(c) RR is a finite direct sum of minimal left ideals.

(d) Each left ideal of R is of the form Re for some idempotent e.

Part (d): Define ϕ1 : R→ R1 =

(

F F

0 F

)

by

ϕ1









a b c
0 d 0
0 0 e







 =

(

a c
0 e

)

.
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Then it can be checked that ϕ1 is a ring homomorphism with kernel I1 and image R1. So,

by the Fundemental Theorem of Homomorphisms, R/I1 ∼= R1. The set

I =

{(

0 c
0 0

)}

can be checked to be an ideal of R1. Since the square of any matrix in I is zero, it is a

nilpotent ideal. So I contains a nonzero nilpotent ideal, and hence, by the Wedderburn-

Artin theorem, R1 is not semisimple. It follows that R/I1 is not semisimple.

Define ϕ2 : R→ R2 = F× F× F, sending a matrix to the three entries on its diagonal.

Then it can be checked that ϕ2 is a ring homomorphism with kernel I2 and image R2. So,

by the Fundamental Theorem of Homomorphisms, R/I2 ∼= R2. Let

X1 = F× {0} × {0};

X2 = {0} × F× {0};

X3 = {0} × {0} × F.

Then it can be checked that each Xi is a minimal left ideal of R2 and therefore a simple

submodule of R2
R2. Furthermore, R2

R2 = X1 + X2 + X3, so it is a sum of simple R2-

submodules. Hence R2
R2 is semisimple, so R2 is a semisimple ring (and therefore so is

R/I2) as required.

Exam 2009, Problem 4.

Let A be a left ideal in a ring R, and assume that A = Aa for some a ∈ A, a 6= 0.

Part (i). Since a ∈ A, a ∈ Aa so there is some e ∈ A such that a = ea. Since a 6= 0,

ea 6= 0. Furthermore, (e2 − e)a = eea− ea = ea− ea = 0.

Part (ii). Let

B = {x ∈ A : xa = 0}.

Let x, y ∈ B. Then xa = 0 and ya = 0. So (x − y)a = xa − ya = 0 − 0 = 0. Hence

x − y ∈ B. Let r ∈ R and x ∈ B. Then xa = 0. So (rx)a = r(xa) = r0 = 0. Hence

rx ∈ B. Therefore B is a left ideal of R.

Part (iii). We assume that A is a minimal left ideal. By its definition, B is contained

in A, and we have seen that B is a left ideal of R. We have that e ∈ A and ea 6= 0. Hence

e 6∈ B. So B 6= A. Since A is a minimal left ideal, we must have B = 0. Since e ∈ A,

e2 − e ∈ A. By part (i), (e2 − e)a = 0, so e2 − e ∈ B. Hence e2 − e = 0, so e2 = e and e is

an idempotent element.

Problem 1 from Problem Sheet 5.

Part (a): Let M be an R-module with the property that rm = 0 for all r ∈ I. Then set

(r + I)m = rm for all r ∈ R. We check this is well-defined: if r + I = r′ + I for r, r′ ∈ R,

then r − r′ ∈ I so (r − r′)m = 0, so rm = r′m. The module axioms for M over the ring

R/I follow from the fact that the corresponding axioms hold for M over the ring R.

Part (b): Let N be an R/I module. Set rn = (r + I)n for any r ∈ R and n ∈ N . The

module axioms for N over the ring R follow from the fact that the corresponding axioms

hold for N over the ring R/I. Furthermore, if r ∈ I, then rn = (r + I)n = (0 + I)n = 0.

Part (c): Let M be an R-module satisfying the condition in (a). Then by (a) we have

an R/I-module structure on M given by (r + I)m = rm for all r ∈ R and m ∈ M . The

construction in B gives a new R-module structure on M given by r ·m = (r+ I)m. Hence

r ·m = rm, so the two module structures are the same. The second part is similar.

Problem 2 from Problem Sheet 5.
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Let a∗b = ba denote the product of elements a, b ∈ Ropp. Similarly, for two matrices A,B

in Mn(R)
opp we shall denote their product by A∗B = BA. Define a map ϕ :Mn(R

opp) →

Mn(R)
opp taking a matrix A ∈Mn(R

opp) to its transpose (defined by AT = (Aji)1≤i,j≤n).

Let A,B ∈Mn(R
opp). Then the i, j-entry of ϕ(AB) = (AB)T is given by

((AB)T )ij = (AB)ji

=
n
∑

k=1

Ajk ∗Bki

=
n
∑

k=1

BkiAjk

=
n
∑

k=1

(BT )ik(A
T )kj

= (BTAT )ij .

Hence ϕ(AB) = ϕ(B)ϕ(A) = ϕ(A) ∗ ϕ(B).

It is easy to check that ϕ(A + B) = ϕ(A) + ϕ(B) and that ϕ(1Mn(Ropp)) = 1Mn(R)opp ,

so ϕ is a ring homomorphism. The map ψ :Mn(R)
opp →Mn(R

opp) also sending a matrix

to its transpose can be seen to be an inverse of ϕ, so ϕ is a ring isomorphism.

For the second part, note that (R × S)opp and Ropp × Sopp are both equal, as sets, to

R × S. If (r, s), (r′, s′) are elements of R × S then their product in (R × S)opp is the

product (r′, s′)(r, s) in R× S, which is equal to (r′r, s′s). Their product in Ropp × Sopp is

(r ∗ r′, s ∗ s′) = (r′r, s′s), which is the same. It is easy to check that addition is the same

for the two structures and that the identity element is the same. So the map taking (r, s)

in (R× S)opp to (r, s) in Ropp × Sopp is a ring isomorphism.

Problem 3 from Problem Sheet 5.

Firstly, note that since ϕ and f are both R-endomorphisms, so is the composition

ϕfϕ−1 : N → N . Let f, g ∈ EndR(M) and n ∈ N . Then

ϕ∗(f + g)(n) = (ϕ(f + g)ϕ−1)(n)

= ϕ((f + g)(ϕ−1(n)))

= ϕ(f(ϕ−1(n)) + g(ϕ−1(n)))

= ϕ(f(ϕ−1(n))) + ϕ(g(ϕ−1(n)))

= (ϕfϕ−1)(n) + (ϕgϕ−1)(n)

= ϕ∗(f)(n) + ϕ∗(g)(n).

Hence ϕ∗(f + g) = ϕ∗(f) + ϕ∗(g).

Furthemore,

ϕ∗(fg)(n) = (ϕfgϕ−1)(n)

= (ϕfϕ−1ϕgϕ−1)(n)

= (ϕ∗(f)ϕ∗(g))(n).

Hence ϕ∗(fg) = ϕ∗(f)ϕ∗(g).

And

ϕ∗(1M )(n) = (ϕ1Mϕ
−1)(n)

= ϕϕ−1(n) = n = 1N (n).
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So ϕ∗(1M ) = 1N , and we see that ϕ∗ is a ring homomorphism. Let ψ : EndR(N) →

EndR(M) be the map taking g ∈ EndR(N) to ϕ−1gϕ. Then, for f ∈ EndR(M), we have

ψϕ∗(f) = ϕ−1(ϕfϕ−1)ϕ = f and similarly ϕ∗ψ(g) = g for g ∈ EndR(N). Hence ϕ is a

ring isomorphism.

Problem 4 from Problem Sheet 5.

Suppose that RR is semisimple. By Problem 5 on Problem Sheet 4, R is a direct sum

of finitely many minimal left ideals. By the Artin-Wedderburn theorem, R is a direct

product of finitely many matrix rings over division rings. Hence Ropp is also, by Problem

2 on this problem sheet. Applying the Artin-Wedderburn Theorem to Ropp, we see that

Ropp is a finite direct sum of finitely many minimal left ideals, so R is a finite direct sum

of finitely many minimal right ideals. Hence RR is semisimple. The converse is proved

similarly.

Problem 5 from Problem Sheet 5.

Part (a). Let x, y ∈ R. Then

x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y,

so xy + yx = 0. And

x = x2 = (−x)2 = −x,

so (applying this second equality to yx), xy = −yx = yx. Hence R is commutative.

Part (b). Suppose that I is a nilpotent ideal of R, so In = {0} for some n ∈ N. Let

x ∈ I. Then xn ∈ In so xn = 0. But xn = x (repeatedly applying x2 = x). So x = 0.

Hence I = 0 so R has no nonzero nilpotent ideals.

If

M0 ⊇M1 ⊇M2 ⊇ · · ·

is a descending sequence of left ideals in R then (noting R is finite):

|R| ≥ |M0| ≥ |M1| ≥ |M2| ≥ · · · .

There are only finitely i for which |Mi| > |Mi+1| (since R is finite), so there must be some

k for which |Mi| = |Mk| for all i ≥ k. But since each Mi is finite and Mi ⊆ Mk for all

i ≥ k, we have Mi =Mk for all i ≥ k, so R is artinian.

So R is artinian and has no nilpotent ideals. Hence R is semisimple by the Wedderburn-

Artin theorem.

Part (c). By the Wedderburn-Artin theorem, R must be a direct product of finitely

many matrix rings over division rings.

R =Mn1
(D1)× · · · ×Mnk

(Dk).

Fix p with 1 ≤ p ≤ k. Then, for all x ∈ Mnp(Dp) we must have x2 = x. Since Dp is

nonzero it has a nonzero element a. If i 6= j then in Mnp(Dp) we have (Inp + aEij)
2 =

Inp + 2aEij = In + aEij , so a = 0, a contradiction. It follows that np = 1 (so we cannot

have i 6= j in the above). Hence

R ∼= D1 × · · ·Dk.

If x ∈ Dp, x
2 = x, so x(x − 1Dp) = 0Dp . Since Dp is an integral domain, x = 0Dp or

x = 1Dp , so Dp = {0Dp , 1Dp}. These elements are distinct as Dp is not the zero ring (as

it is a division ring). If 1Dp + 1Dp = 1Dp then we have 1Dp = 0Dp , a contradiction. So

1Dp + 1Dp = 0Dp . It follows that Dp
∼= Z2. Hence R is isomorphic to a direct product of

copies of Z2. (We note that such a direct product satisfies the original assumptions).

R. J. Marsh, 30/10/14.


