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Page 401, Question 1(a). We carry out the following operations on A to get the Smith normal form.




0 2 −1
−3 8 3
2 −4 −1



 −→
C1↔C3





−1 2 0
3 8 −3
−1 −4 2



 −→
C2+2C1





−1 0 0
3 14 −3
−1 −6 2





R2+3R1−→
R3−R1





−1 0 0
0 14 −3
0 −6 2



 −→
C2↔C3





−1 0 0
0 −3 14
0 2 −6



 −→
R2↔R3





−1 0 0
0 2 −6
0 −3 14



 −→
C3+3C2





−1 0 0
0 2 0
0 −3 5



 −→
R3+R2





−1 0 0
0 2 0
0 −1 5



 −→
R2↔R3





−1 0 0
0 −1 5
0 2 0



 −→
C3+5C2





−1 0 0
0 −1 0
0 2 10



 −→
R3+2R2





−1 0 0
0 −1 0
0 0 10





(−1)·R1

−→
(−1)·R2





1 0 0
0 1 0
0 0 10





Page 401, Question 1(b). We carry out the following operations on A to get the Smith normal form.




−x− 3 2 0
1 −x 1
1 −3 −x− 2



 −→
R1↔R2





1 −x 1
−x− 3 2 0

1 −3 −x− 2





C2+xC1−→
C3−C1





1 0 0
−x− 3 −x2 − 3x+ 2 x+ 3

1 x− 3 −x− 3





R2+(x+3)R1

−→
R3−R1





1 0 0
0 −x2 − 3x+ 2 x+ 3
1 x− 3 −x− 3



 −→
C2↔C3





1 0 0
0 x+ 3 −x2 − 3x+ 2
0 −x− 3 x− 3



 −→
C3+xC2





1 0 0
0 x+ 3 2
0 −x− 3 −x2 − 2x− 3



 −→
C2↔C3





1 0 0
0 2 x+ 3
1 −x2 − 2x− 3 −x− 3



 −→
C3−

x+3

2
C2





1 0 0
0 2 0
0 −x2 − 2x− 3 1

2 (x
3 + 5x2 + 7x+ 3)





1
2
R2

−→
2R3





1 0 0
0 1 0
0 −2x2 − 4x− 6 x3 + 5x2 + 7x+ 3



 −→
R3+(2x2+4x+6)R2





1 0 0
0 1 0
0 0 (x + 1)2(x+ 3)





Page 401, Question 3(b). The subgroup G of Z4 generated by these elements is

G = {x(2, 3, 1, 4) + y(1, 2, 3, 0) + z(1, 1, 1, 4) : x, y, z ∈ Z3}.

Let A be the 4× 3 matrix whose columns are the three given vectors. Suppose that P is a 4× 4 matrix and Q

is a 3× 3 matrix, both invertible (over Z). Then, since Q is invertible,

G = {Ax : x ∈ Z3}
1
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= {AQx : x ∈ Z3}.

Since P is invertible, it gives a Z-module isomorphism from Z4 to Z4. This takes G to PG, so P also gives an

isomorphism from G to PG. We have

PG = {PAQx : x ∈ Z3}.

So if A is equivalent to a matrix B, the corresponding subgroups are isomorphic, and hence have the same rank.

So the rank of G is the number of invariant factors in the Smith normal form of A. We thus compute the Smith

normal form of A:









2 1 1
3 2 1
1 3 1
4 0 4









−→
R1↔R3









1 3 1
3 2 1
2 1 1
4 0 4









C2−3C1−→
C3−C1









1 0 0
3 −7 −2
2 −5 −1
4 −12 0









R2−3R1

R3−2R1−→
R4−4R1









1 0 0
0 −7 −2
0 −5 −1
0 −12 0









−→
R2↔R3









1 0 0
0 −5 −1
0 −7 −2
0 −12 0









−→
C2↔C3









1 0 0
0 −1 −5
0 −2 −7
0 0 −12









(−1)R2

(−1)R3

−→
(−1)R4









1 0 0
0 1 5
0 2 7
0 0 12









−→
C3−5C2









1 0 0
0 1 0
0 2 −3
0 0 12









−→
R3−2R2









1 0 0
0 1 0
0 0 −3
0 0 12









−→
R4+4R3









1 0 0
0 1 0
0 0 −3
0 0 0









−→
(−1)R3









1 0 0
0 1 0
0 0 3
0 0 0









We see that A has three invariant factors, so the rank of G is 3.

Page 409, Question (c). We perform operations on the matrix A whose columns are the vectors coming from

the coefficients of the relations given.




0 −3 2
2 8 −4
−1 3 −1



 −→
R1↔R3





−1 3 −1
2 8 −4
0 −3 2





C2+3C1−→
C3−C1





−1 0 0
2 14 −6
0 −3 2



 −→
R2+2R1





−1 0 0
0 14 −6
0 −3 2



 −→
C2↔C3





−1 0 0
0 −6 14
0 2 −3



 −→
R2↔R3





−1 0 0
0 2 −3
0 −6 14



 −→
C3+C2





−1 0 0
0 2 −1
0 −6 8



 −→
C2↔C3





−1 0 0
0 −1 2
0 8 −6





−→
C3+2C2





−1 0 0
0 −1 0
0 8 10



 −→
R3+8R2





−1 0 0
0 −1 0
0 0 10





(−1)·R1

−→
(−1)·R2





1 0 0
0 1 0
0 0 10





Hence the abelian group is Z/1Z× Z/1Z× Z/10Z, which is isomorphic to Z/10Z.

Exam 2013, Problem 1. For part (a), we carry out operations on the matrix given to reduce it to Smith

normal form.




2−X 1 2
0 1−X 2
1 0 1−X



 −→
R1↔R3





1 0 1−X
0 1−X 2

2−X 1 2



 −→
C3−(1−X)C1





1 0 0
0 1−X 2

2−X 1 −X2



 −→
R3−(2−X)R1





1 0 0
0 1−X 2
0 1 −X2



 −→
R2↔R3





1 0 0
0 1 −X2

0 1−X 2



 −→
C3+X2C2





1 0 0
0 1 0
0 1−X 2 +X2 −X3



 −→
R3−(1−X)R2





1 0 0
0 1 0
0 0 2 +X2 −X3





For part (b), we need to compute the invariant factors of A −XI, which is the matrix in part (a). So the

invariant factors are 1, 1 and 2 + X2 −X3. The monic version of the last one is −2 − X2 + X3 (multiplying

by the unit −1). So there is only one non-unit invariant factor, −2−X2 +X3. The corresponding companion
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matrix is:




0 0 2
1 0 0
0 1 1





Since there is only one non-unit invariant factor, this is the rational canonical form of A.

We finally consider part (c). If P,Q ∈ Z3[X ] then ΦA(P+Q) = (P+Q)(A) = P (A)+Q(A) = ΦA(P )+ΦA(Q).

We also have ΦA(PQ) = (PQ)(A) = P (A)Q(A) = ΦA(P )ΦA(Q) and ΦA(1Z3[X]) = 1Z3[X](A) = I, the identity

matrix in Z3[X ]. Hence ΦA is a ring homorphism. By the Fundamental theorem of ring homomorphisms,

Z3[X ]/ kerΦA
∼= imΦA.

The kernel of ΦA consists of the polynomials P in X over Z3 which satisfy P (A) = 0, which is the ideal

generated by the minimum polynomial of A. This minimum polynomial is the last invariant factor of A, which

is mA = −2−X2+X3 by part (b). We havemA(0) = −2, mA(1) = −2−1+1 = −1 and mA(2) = −2−4+8 = 2

(recall we are working over Z3). Since none of these are zero, mA has no linear factors, so cannot be factorized,

i.e. it is irreducible.

If I was an ideal of Z3[X ] containing (mA) it would be principal (as Z3[X ] is a PID), of form (P ) for some

polynomial P . But then (mA) ⊆ (P ) so P |mA. Since mA is irreducible, P is either a unit times mA or a

unit, so (P ) is either (mA) or Z3[X ]. Hence kerΦA = (mA) is a maximal ideal of Z3[X ]. So the quotient

Z3[X ]/ kerΦA
∼= imΦA is a field.

Exam 2011, Problem 1. For part (a), we apply operations to A− xI4, reducing it to Smith normal form.








2− x 0 −1 0
0 2− x 0 −1
0 0 2− x 0
0 0 0 2− x









C1↔C3−→
C2↔C4









−1 0 2− x 0
0 −1 0 2− x

2− x 0 0 0
0 2− x 0 0









C3+(2−x)C1

−→
C4+(2−x)C2









−1 0 0 0
0 −1 0 0

2− x 0 (2 − x)2 0
0 (2 − x) 0 (2− x)2









R3+(2−x)R1

−→
R4+(2−x)R2









−1 0 0 0
0 −1 0 0
0 0 (2− x)2 0
0 0 0 (2− x)2









(−1)R1

−→
(−1)·R2









1 0 0 0
0 1 0 0
0 0 (2− x)2 0
0 0 0 (2 − x)2









For part (b), we note that the non-unit invariant factors of A−xI4 are (2−x)2 and (2−x)2. The companion

matrix of (2− x)2 = 4− 4x+ x2 is:
(

0 −4
1 4

)

.

Taking two copies of this block, we see that the rational canonical form of A is








0 −4 0 0
1 4 0 0
0 0 0 −4
0 0 1 4









.

For part (c), we note that the non-unit invariant factors of A−xI4 are (2−x)2 and (2−x)2. This expression

for the invariant factors already gives a factorization into irreducible polynomials, since 2 − x is irreducible.

Hence the elementary divisors are (2− x)2 and (2− x)2.

The Jordan normal form is determined by the elementary divisors: the Jordan block corresponding to (2−x)2

is:

(

2 0
1 2

)

. The Jordan normal form of A is obtained by taking two copies of this block:









2 0 0 0
1 2 0 0
0 0 2 0
0 0 1 2









.
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Exam 2009, Problem 2. The Smith normal form of an m× n matrix A over a PID R is an m× n matrix D

with entries in R of the form:






















a1
a2

. . .

ak























where aii = ai for 1 ≤ i ≤ k and all other entries are zero, such that a1|a2, a2|a3, . . . , ak−1|ak and there is

an invertible m×m matrix P with entries in R and an invertible n× n matrix Q with entries in R such that

PAQ = D.

We find the Smith normal form of A by applying row and column operations to it.




6 4 2
4 2 2
8 6 6



 −→
C1↔C3





2 4 6
2 2 4
6 6 8





C2−2C1−→
C3−3C1





2 0 0
2 −2 −2
6 −6 −10





R2−R1−→
R3−3R1





2 0 0
0 −2 −2
0 −6 −10





(−1)·R2

−→
(−1)·R3





2 0 0
0 2 2
0 6 10



 −→
C3−C2





2 0 0
0 2 0
0 6 4



 −→
R3−3R2





2 0 0
0 2 0
0 0 4





Let A be a 6 × 6 matrix over R with minimum polynomial (x − 2)(x − 1)3. Then the last invariant factor

of A must be (x − 2)(x − 1)3, with the others dividing it. Furthermore, the product of the non-unit invariant

factors must be the characteristic polynomial, hence of degree 6. So the invariant factors before the last one

must have total degree 2, with each dividing the next (so the following one must always have degree at least

that of the preceeding one). We can write 2 = 2, 2 = 1 + 1 as a sum of increasing positive integers. Hence the

possibilities for the (non-unit) invariant factors are:

(x− 1)2, (x− 2)(x− 1)3

(x− 2)(x− 1), (x− 2)(x− 1)3

(x− 1), (x− 1), (x− 2)(x− 1)3

(x− 2), (x− 2), (x− 2)(x− 1)3

In the first case, the companion matrices of the non-unit invariant factors, (x − 1)2 = x2 − 2x + 1 and (x −

2)(x− 1)3 = x4 − 5x3 + 9x2 − 7x+ 2 are

(

0 −1
1 2

)

and









0 0 0 −2
1 0 0 7
0 1 0 −9
0 0 1 5









,

so the rational canonical form of A, obtained by taking the block matrix with these two blocks on the diagonal

and zeros elsewhere, is:
















0 −1 0 0 0 0
1 2 0 0 0 0
0 0 0 0 0 −2
0 0 1 0 0 7
0 0 0 1 0 −9
0 0 0 0 1 5

















Problem 1. For the matrix A in part (a) of question 1 of page 388 of the book, find square matrices P and Q

such that PAQ is in Smith normal form.

Each row operation corresponds to multiplying the matrix on the left by a corresponding elementary matrix,

as we’ve seen in lectures. Similarly, each column operation corresponds to multiplying the matrix on the right by

a corresponding matrix. So P is the product P = Xa · · ·X1 of the matrices corresponding to the row operations
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(in order from right to left) and Q is the product Q = Y1 · · ·Yb of the matrices corresponding to the column

operations (in order from left to right).

Multiplying the identity matrix on the left by X1 has the same effect as the row operation corresponding to

X1. Then multiplying X1 on the left by X2 has the same effect as the row operation corresponding to X2, and

so on. So we can compute the product P = Xa · · ·X1 by applying the same row operations that we applied to

A (in the same order), starting with the identity matrix. Similarly, we can compute the product Q = Y1 · · ·Yb

by applying the column operations we applied to A to the identity matrix, in order.

Computing P , from the row operations:




1 0 0
0 1 0
0 0 1





R2+3R1−→
R3−R1





1 0 0
3 1 0
−1 0 1



 −→
R2↔R3





1 0 0
−1 0 1
3 1 0



 −→
R3+R2





1 0 0
−1 0 1
2 1 1



 −→
R2↔R3





1 0 0
2 1 1
−1 0 1



 −→
R3+2R2





1 0 0
2 1 1
3 2 3





(−1)·R1

−→
(−1)·R2





−1 0 0
−2 −1 −1
3 2 3





Computing Q, from the column operations:




1 0 0
0 1 0
0 0 1



 −→
C1↔C3





0 0 1
0 1 0
1 0 0



 −→
C2+2C1





0 0 1
0 1 0
1 2 0



 −→
C2↔C3





0 1 0
0 0 1
1 0 2



 −→
C3+3C2





0 1 3
0 0 1
1 0 2



 −→
C3+5C2





0 1 8
0 0 1
1 0 2





Hence, we have

P =





−1 0 0
−2 −1 −1
3 2 3



 , Q =





0 1 8
0 0 1
1 0 2



 .

We check:

PAQ =





−1 0 0
−2 −1 −1
3 2 3









0 2 −1
−3 8 3
2 −4 −1









0 1 8
0 0 1
1 0 2





=





0 −2 1
1 −8 0
0 10 0









0 1 8
0 0 1
1 0 2



 =





1 0 0
0 1 0
0 0 10



 ,

Problem 2. A ring R is said to be a Euclidean domain if there is a function ϕ : R → Z satisfying:

(a) For all nonzero elements a, b ∈ R satisfying a|b, we have ϕ(a) ≤ ϕ(b).

(b) For all a, b ∈ R with b nonzero, there are elements q, r in R such that a = qb+ r and ϕ(r) < ϕ(b).

Answer Problem 1 on page 219. (Note that, in the book, a|b can only hold if a, b are both nonzero. But the

question is still correct with our definition).

Part (a). Suppose b 6= 0. By (b) in the definition, we can write b = qb+ r where ϕ(r) < ϕ(b). If r 6= 0, then

b(1− q) = r, so by (a) in the definition, ϕ(b) ≤ ϕ(r), a contradiction. Hence r = 0 and ϕ(0) < ϕ(b).

Part (b). Suppose a, b ∈ R are associates. Then a = 0 if and only if b = 0, and in this case ϕ(a) = ϕ(b). So

assume a, b are both non-zero. Since a, b are associates, a|b and b|a. Hence ϕ(a) ≤ ϕ(b) and ϕ(b) ≤ ϕ(a) by (a)

in the definition. So ϕ(a) = ϕ(b) as required.

Part (c). Suppose a, b ∈ R satisfy a|b and ϕ(a) = ϕ(b). So b = ca for some c ∈ R. If a = 0 then b = 0. If

b = 0 and a 6= 0, then ϕ(a) 6= ϕ(b) by part (a), a contradiction, so a = 0. Hence a = 0 if and only if b = 0, and

in this case, a, b are associates.

We are left with the case a, b both non-zero. Write a = qb + r, where ϕ(r) < ϕ(b). We assume first that

r 6= 0. We have r = a− qb = a− qca = a(1− qc), so ϕ(a) ≤ ϕ(r) by (a) in the definition. We then have:

ϕ(a) ≤ ϕ(r) < ϕ(b) = ϕ(a),

a contradiction. Hence r = 0 and a = qb. Therefore a = qb = qca. Since a 6= 0, 1 = qc and q, c are units, so a, b

are associates as required.
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Problem 3. It is known that every Euclidean domain is a principal ideal domain (see Theorem 3.2 on page

218 of the book). Give a technique for reducing a matrix over a Euclidean domain to its Smith normal form

using only elementary row and column operations (Challenge question).

We first prove:

Lemma Let R be a Euclidean domain. Let a ∈ R.

(i) If a 6= 0 then ϕ(a) ≥ ϕ(1).

(ii) We have ϕ(a) = ϕ(1) if and only if a is a unit.

Proof. Note that, by part (a) of Problem 2, ϕ(0) < ϕ(a) for any element a ∈ R \ {0}. Also, for such an element

a, we have 1|a so, by (a) in the definition of a Euclidean domain, ϕ(1) ≤ ϕ(a).

Suppose a ∈ R and ϕ(a) = ϕ(1). Since 1|a, we have by part (c) from Problem 2 that a and 1 are associates,

which implies that a is a unit. Conversely, if a is a unit, then a and 1 are associates so by part (b) of Problem

2, ϕ(a) = ϕ(1). So an element of R is a unit if and only if ϕ(a) = ϕ(1). �

Suppose we are given A ∈ Mm,n(R). If every entry of A is zero, we are done. If not, we find aij with ϕ(aij)

minimal and apply row and column exchanges to move the entry to the top left corner of A. We then try to

reduce the first row of the matrix to zeros.

Step 1: If a1t 6= 0 and a11|a1t for some t 6= 1, write a1t = da11. We can apply:

Ct − dC1

to reduce this entry to zero. We do this for all possible t.

Step 2: If there is still some non-zero entry a1t in A with t 6= 1, we write a1t = qa11+ r where ϕ(r) < ϕ(a11).

We then apply the operations:

Ct − qC1, C1 ↔ Ct

which reduce the entry a1t to r and swap it into the (1, 1) position.

We then repeat Steps 1 and 2. Each time we apply Step 2, we reduce the value of ϕ applied to the 1, 1-entry of

the matrix. Suppose this process never stopped. By the Lemma, we would eventually reach the point where a11

was a unit, and stop, a contradiction. It follows that after finitely many steps we must have a12 = · · · = a1n = 0.

We apply the same procedure to the first column. Note that while doing this, we may swap rows so that the

first row has non-zero entries again, apart from the first. We therefore repeat the first step, clearing the first

row again (making a12 = · · · = a1n = 0), then the first column, and so on.

Since the value of ϕ applied to the 1, 1-entry decreases each time we return to the first row, it again follows

from the Lemma that this process must terminate after finitely many steps, with the first row and column

cleared, i.e. with a12 = · · · = a1n = 0 and a21 = · · · = am1 = 0. The rest of the algorithm is as in the general

PID case considered in lectures and the book, except that we follow the above procedure again in the last step

of the proof, i.e. in order to reduce a matrix:






















a1
a2

. . .

ak























where a1 ∤ a2, we apply R1 + R2 and then repeat the whole of the above procedure: the algorithm terminates

because the value of ϕ applied to the 1, 1 entry decreases each time we do this (we again use the Lemma).

R. J. Marsh, 18/11/14.


