
MA3201 Rings and Modules, 2014

Syllabus
The syllabus of the course is

Chapter 9 All sections
Chapter 10 All sections
Chapter 14 14.1-14.5
Chapter 19 19.1-19.3
Chapter 20 All sections
Chapter 21 All sections

from the book:

Bhattacharya, P. B.; Jain, S. K.; Nagpaul, S. R. Basic abstract algebra. Second edition. Cambridge

University Press, Cambridge, 1994,

with the modifications and additions given below.

Chapter 9

Our definition of rings differs from the book: we assume that all rings have a multplicative identity
element, i.e. an element 1R in the ring R such that 1Ra = a1R = a for all a ∈ R.

Integral domains, division rings and fields must all be non-zero rings.
Since we assume our rings to have a multiplicative identity, we define a subring of a ring as in the

book, but with the additional property that the multiplicative identity element of the ring lies in the
subring.

We did not discuss boolean rings, the ring of formal Laurent series, or the group algebra of a group.

Chapter 10

Since we assume rings have a multiplicative identity, the expressions for ideals generated by elements
in a ring on page 183 have a simpler form.

In our setup, a ring homomorphism from R to S must send 1R to 1S . So, for example, the only
ring homomorphism from Z to Z is the identity homomorphism.

The sum A+B considered in Examples 3.4 on p199 is not in general a ring in our setup, as it may
not have a multiplicative identity element.

We did not consider comaximal ideals (page 203).
We omitted the proofs of Theorem 1.2 on page 181 (although we did consider the case when R is

a field), Theorem 2.5 on page 191, Theorem 4.2 on p204, Theorem 4.6 on p206, Theorem 4.7 on page
207. We omitted Theorem 2.4 on page 190.

Chapter 11

We needed some material from Chapter 11 in order to discuss Chapters 20 and 21: Units; irreducible
and prime elements; that if an element in a commutative integral domain is prime then it is irreducible,
with proof; that in a principal ideal domain (PID) an irreducible element is prime (without proof);
unique factorization domains (UFDs); associates; unique factorization in a UFD (without proof); that
every PID is a UFD (without proof); greatest common divisors (gcds); existence of gcds in a UFD
and uniqueness up to multiplication by a unit (without proof); the following result (Lemma 6.12 from
lectures):

Lemma. Let R be a PID and a, b ∈ R \ {0}. Then there are s, t ∈ R such that sa+ tb = gcd(a, b).

Proof. Let d ∈ R be such that (d) = (a, b) (where (a, b) is the ideal generated by a and b). Since
a ∈ (d) we have d|a. Since b ∈ (d), we have d|b. Suppose c|a and c|b. Then a ∈ (c) and b ∈ (c), so
(a, b) ⊆ (c). Hence (d) ⊆ (c), so c|d.
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Therefore, d is a gcd of a and b. Since d ∈ (a, b), there are s, t ∈ R such that d = sa+ tb. Any other
gcd of a and b is an associate of d, so has the same property. �

Chapter 14, Sections 1–5

Note that for a module M in our setup, we include the axiom 1Rm = m for all m ∈ M .
We did not consider exact sequences (page 259). We used the term semisimple instead of completely

reducible in Section 14.4 (page 260 and onwards).
We omitted the proofs of Theorem 5.1 on page 265, Theorem 5.3 on page 265, Theorem 5.4 on page

265. We omitted Theorem 5.2 on page 265.

Chapter 19, Sections 1–3

We did not discuss finitely cogenerated modules (page 368) or the proof of Theorem 2.2 on page
370.

For us, a ring is noetherian if it is both left and right noetherian, not as in the book, and similarly
a ring is artinian if it is both left and right artinian.

We called the rings satisfying the equivalent conditions in Theorem 3.6 on page 386 semisimple

(rather than semisimple artinian as in the book).
We omitted Theorems 2.7, 2.8 on page 375, Lemma 2.10 and Theorem 2.11 on page 374, Theo-

rem 2.12 on page 375, the Hilbert Basis Theorem (Theorem 2.14 on page 375), Maschke’s Theorem
(Theorem 3.5 on page 385) and Theorem 3.8 on page 387.

Chapter 20

We omitted the proof of Lemma 1.1.
A remark was made on how the Smith Normal Form can be obtained in the case of Z and F[x], F

a field - more details now follow.
Suppose we are given A ∈ Mm,n(Z). If every entry of A is zero, we are done. If not, we find aij

with |aij | minimal and apply row and column exchanges to move the entry to the top left corner of
A. We then try to reduce the first row of the matrix to zeros.

Step 1: If a1t 6= 0 and a11|a1t for some t 6= 1, we can apply:

Ct −
a1t

a11
C1

to reduce this entry to zero. We do this for all possible t.
Step 2: If there is still some non-zero entry a1t in A with t 6= 1, we write a1t = qa11 + r where

0 < r < |a11|. We then apply the operations:

Ct − qC1, C1 ↔ Ct

which reduce the entry a1t to r and swap it into the (1, 1) position.
Repeating Steps 1 and 2, we must have a12 = · · · = a1n = 0 after finitely many iterations, since in

Step 2 the absolute value of the 1, 1 entry decreases.
We apply the same procedure to the first column. Note that while doing this, we may swap rows

so that the first row has non-zero entries again (apart from the 1, 1 entry). We therefore repeat the
first step, clearing the first row again (making a12 = · · · = a1n = 0), then the first column, and so on.

Since the absolute value of the 1, 1-entry decreases each time we go back to the first row, this
process must terminate after finitely many steps, with the first row and column cleared, i.e. with
a12 = · · · = a1n = 0 and a21 = · · · = am1 = 0. The rest of the algorithm is as in the general PID case
considered in lectures and the book. In particular, at the end of the proof, when we need to reduce a
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where a1 ∤ a2, we apply R1 + R2 and then apply the whole of the above procedure. Each time we do
this, |a1| decreases in value, so eventually we reach a point where a1|a2 (since this is true for a1 = ±1).

A similar approach can be used for F[x], using the degree function instead of absolute value. In
general this approach works for any Euclidean domain (see page 217, Section 11.3 of the book for the
definition, and the solution to Problem 2 on Problem Sheet 6). We get an explicit algorithm, while for
a general PID the proof is not constructive (as the elements s, t in the Lemma stated in the section on
Chapter 11 above are not constructed explicitly by the proof, although we note that for a Euclidean
domain they could be computed using the Euclidean algorithm).

Chapter 21

In Section 2 we considered only the statement of Theorem 2.3, and not its proof. An extra propo-
sition was used in the discussion of the Jordan canonical form, and there was some extra discussion
of characteristic and minimal polynomials; see below for both.

Proposition 9.1. Let R be a PID and let r, s ∈ R, with gcd(r, s) = 1. Then:

R

(rs)
∼=

R

(r)
⊕

R

(s)
.

Proof. Define a map

ϕ : R →
R

(r)
⊕

R

(s)

by sending x ∈ R to (x + (r), x + (s)). Then it is easy to show that ϕ is an R-homomorphism. If
ϕ(x) = 0 then x ∈ (r)∩ (s), so x = rp = sq for some p, q ∈ R. Since gcd(r, s) = 1, we have, by Lemma
6.12 in lectures, that there are a, b ∈ R such that ar + bs = 1. Then

x = 1x = arx+ bsx = arsq + bsrp,

so x ∈ (rs). If x ∈ (rs) then x ∈ (r) ∩ (s) so ϕ(x) = 0. Hence ker(ϕ) = (rs).
Let

(x+ (r), y + (s)) ∈
R

(r)
⊕

R

(s)
.

Then

x− y = (x− y)(ar + bs) = (x− y)ar + (x− y)bs,

so

z = x− (x− y)ar = y + (x− y)bs.

We have

ϕ(z) = (x− (x− y)ar + (r), y + (x− y)bs+ (s)) = (x+ (r), y + (s)).

Hence ϕ is onto. By the Fundamental Theorem of R-Homomorphisms,

R

ker(ϕ)
∼= im(ϕ),

giving the result. �
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Characteristic and minimal polynomials:

Definition 8.4. Let F be a field and A ∈ Mn(F). Then cA = det(A − xIn) is the characteristic

polynomial of A. It is nonzero, has degree n, and the coefficient of the highest degree term is (−1)n.
If V is an n-dimensional F-vector space and T : V → V is a linear transformation, then the

characteristic polynomial of T is cT = cA, where A = MB
B is the matrix representing T for some basis

B of V .

Remark 8.5. The characteristic polynomial cT is independent of the choice of basis B: If A′ =
MB′

B′ (T ) for some basis B′ of V , then A′ = P−1AP for some invertible matrix P . So

cA′ = det(A′ − xIn)

= det(P−1AP − P−1IP )

= det(P−1(A− xIn)P )

= det(P )−1 det(A− xI) det(P )

= det(A− xIn) = cA.

If f ∈ F[x], f = a0 + a1x+ · · ·+ anx
n, then f(A) is defined to be

f(A) = a0 + a1A+ · · ·+ anA
n,

and f(T ) is defined to be

f(T ) = a0 + a1T + · · ·+ anT
n.

We have seen in the proof of Theorem 8.1 in lectures (Smith Normal Form) that there are invertible
n× n matrices P,Q such that

P (A− xIn)Q =



















1
. . .

1
f1

. . .

fk



















= D,

where f1|f2| · · · |fk are the nonunit invariant factors of A − xIn. Note that we can always apply the
operations uRi, for a unit u, to ensure that the units in the Smith Normal Form are reduced to 1 as
above and the fi are monic.

We have

det(P ) det(A− xIn) det(Q) = det(D) = f1 · · · fk.

Hence, noting that det(P ) and det(Q) are units, we have:

Theorem 8.6. Let A be an n × n matrix and f1, . . . , fk the non-unit invariant factors of A − xIn,
chosen to be monic. Then the characteristic polynomial of A satisfies:

cA = f1 · · · fku,

where u ∈ F[x] is a unit (i.e. an element of F \ {0}). In fact, since the fi are monic, u is the leading
term of cA, which is (−1)n.

Theorem 8.7. Let V be an F-vector space and T : V → V a nonzero linear transformation. Let
A = MB

B (T ), where B is a basis of V . Let f1|f2| · · · |fk be the non-unit invariant factors of A − xIn,
chosen to be monic. Then fk(T ) = 0 and f(T ) = 0 if and only if f ∈ (fk). Furthermore, fk(A) = 0
and f(A) = 0 if and only if f ∈ (fk).

Proof. We have seen that (Theorem 4.1, page 411):

V ∼=
F[x]

(f1)
⊕ · · · ⊕

F[x]

(fk)
.
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So

V = {(g1 + (f1), . . . , gk + (fk)) : gi ∈ F[x], i = 1, . . . , k}.

Let f ∈ F[x]. Then f(T ) = 0 if and only if f(T )v = 0 for all v ∈ V . This is equivalent to f(v) = 0 for
all v ∈ V . This is equivalent to

f(g1 + (f1), . . . , gk + (fk)) = (0 + (f1), . . . , 0 + (fk))

for all gi ∈ F[x], i = 1, . . . , k.
This is equivalent to

f(1 + (f1), . . . , 1 + (fk)) = (0 + (f1), . . . , 0 + (fk)),

which is equivalent to f ∈ (fi) for i = 1, . . . , k. This is equivalent to f ∈ (fk), since

(fk) ⊆ (fk−1) ⊆ · · · ⊆ (f1).

The second statement follows from the first. �

Definition 8.8. In the situation of Theorem 8,7, the invariant factor fk is called the minimum

polynomial mT of T . It is the monic polynomial of minimal degree such that f(T ) = 0. Similarly, fk
is the minimum polynomial of A = MB

B (T ).

Corollary 8.9. Let T : V → V be a nonzero linear transformation. Then mT |cT .

Proof. We have mT = fk and cT = f1 · · · fk. �

Theorem 8.10. (Cayley Hamilton Theorem)
Let A ∈ Mn(F). Then cA(A) = 0.

Proof. We have

cT (A) = (f1 · · · fk)(A)

= f1(A) · · · fk(A) = 0,

since fk = mA. �

For example, if A =

(

1 2
1 3

)

, then

cA = det

(

1− x 2
1 3− x

)

= (1− x)(3 − x)− 2 = x2 − 4x+ 1.

We can check that

cA(A) = A2 − 4A+ I2 =

(

0 0
0 0

)

.

Finally, some information on quivers and differential equations, not covered in the book.

1. Quivers

1.1. Path algebra of a quiver. : A quiver Q is a directed graph, i.e. a pair Q = (Q0, Q1) consisting
of vertices Q0 and a set of arrows Q1 between them. We will consider only finite quivers, i.e. quivers
Q in which Q0 and Q1 are both finite.

For example:

(1)

1 2

(2)

1
α

// 2

(3)

1
α

// 2
β

// 3
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Given a quiver Q and a field F, we can form the path algebra FQ. We take a vector space over F
with basis given by the paths in Q, including the trivial paths. A trivial path is of the form ei for
i ∈ Q0.

For example (3) above, a basis for FQ is given by:

{e1, e2, e3, α, β, βα}.

Elements of FQ have the form

a1e1 + a2e2 + a3e3 + a4α+ a5β + a6βα,

where a1, . . . , a6 lie in F. Note that βα denotes the path given by following arrow α followed by arrow
β.

The product in FQ is given by composition of paths, when possible, and zero otherwise.
So, for example, αe1 = u, e1α = 0 (cannot compose), e2

1
= e1, e1e2 = 0, α2 = 0.

It can be shown that FQ is a ring. The zero linear combination of paths is the zero element (all
ai = 0 in the above), and

∑

i∈Q0
ei is the identity element. In addition, FQ is an F-algebra.

As an example, consider
1α
99

In this case, the paths are e1, α, α
2, . . . and an element of FQ is of the form

a0e1 + a1α+ a2α
2 + · · · + anα

n

for some n. It can be seen that FQ ∼= F[x].

1.2. Idempotents. : Let F be a field and Q the quiver:

1
u

// 2
v

// 3

Then the idempotent paths e1, e2, e3 in FQ satisfy the assumptions of Lemma 2.36 from lectures. We
have R = Re1 ⊕Re2 ⊕Re3; Rei has basis given by paths in Q starting at i. So, for example, Re1 has
F-basis e1, u.

1.3. Representations of quivers. : Let Q be the quiver: 1
α

// 2 . Let F be a field. A representa-

tion of Q over F is a pair of vector spaces, V1 and V2 over F, together with a linear map fα : V1 → V2.
We can construct an FQ-module M as follows. Take

M = V1 ⊕ V2 = {(v1, v2) : v1 ∈ V1, v2 ∈ V2},

the direct sum of V1 and V2 as vector spaces. Note that M is an abelian group. Then set

e1(v1, v2) = (v1, 0)

e2(v1, v2) = (0, v2)

α(v1, v2) = (0, fα(v2))

(a1e1 + a2e2 + a3α)(v1, v2) = a1e1(v1, v2) + a2e2(v1, v2) + a3α(v1, v2).

As another example, we consider the quiver: 1
α

// 2
β

// 3 . A representation of this quiver over

F is of the form: V1

fα
// V2

fβ
// V3 where V1, V2, V3 are F-vector spaces and fα and fβ are linear

maps. We have, for example, e2(v1, v2, v3) = (0, v2, 0) and β(v1, v2, v3) = (0, 0, fβ(v3)).

1.4. Left noetherian. :
We have seen above that the path algebra FQ associated to the quiver Q:

1
α

// 2
β

// 3

is 6-dimensional. It follows that it is left noetherian (see Example 4.15 in lectures).

R. J. Marsh, 17/11/14.


