26.08. - 07.09.

Exercise 1. Let $Q = \begin{bmatrix} 1 \rightarrow 2 \end{bmatrix}$. Consider the representations $V = \begin{bmatrix} k \stackrel{\text{id}}{\leftarrow} k \end{bmatrix}$ and $W = \begin{bmatrix} k \stackrel{0}{\leftarrow} k \end{bmatrix}$. Let $\varphi \colon V \rightarrow W$ be given by $\varphi(1) = 0$ and $\varphi(2) = \text{id}$. Calculate kernel, image, and cokernel of φ .

Exercise 2. Show that in rep(Q, R) a homomorphism is

- a monomorphism iff it is injective at every vertex,
- an epimorphism iff it is surjective at every vertex,
- an isomorphism iff it is bijective at every vertex.

09.09. - 14.09.

Exercise 3. Let $\mathscr{C} = \operatorname{rep}(1 \longrightarrow 2)$ and $\mathscr{D} = \operatorname{rep}(1 \longrightarrow 2 \longrightarrow 3)$. Consider the functors

$$F: \mathscr{D} \longrightarrow \mathscr{C}: (V_1 \longleftarrow V_2 \longleftarrow V_3) \longmapsto (V_1 \longleftarrow V_2),$$

$$G: \mathscr{C} \longrightarrow \mathscr{D}: (V_1 \longleftarrow V_2) \longmapsto (V_1 \longleftarrow V_2 \longleftarrow 0), \text{ and}$$

$$H: \mathscr{C} \longrightarrow \mathscr{D}: (V_1 \longleftarrow V_2) \longmapsto (V_1 \longleftarrow V_2 \xleftarrow{\text{id}} V_2).$$

Show that (G, F) and (F, H) are adjoint pairs.

Exercise 4. Show the *Yoneda Lemma*:

Let \mathscr{C} be a category, $F: \mathscr{C} \longrightarrow \mathbf{Set}$ a covariant functor, and C an object in \mathscr{C} . There is a bijection

$$\operatorname{Nat}(\operatorname{Hom}_{\mathscr{C}}(C,-),\mathbf{F})\longrightarrow \mathbf{F}(C).$$

(Here the left side denotes the set of natural transformations from $\operatorname{Hom}_{\mathscr{C}}(C,-)$ to F.)

15.09. - 21.09.

Exercise 5. Let \mathscr{C} be a category. Show that

- $f \circ g \mod g \mod$,
- f and g mono $\Longrightarrow f \circ g$ mono,
- f mono and split-epi $\implies f$ iso. Find an example of a morphism that is mono and epi, but not iso.

Exercise 6. Find a quiver Q and a representation V such that

 $\operatorname{Hom}_{\operatorname{rep} Q}(V, -) \colon \operatorname{rep} Q \longrightarrow \operatorname{mod} k$

does not commute with colimits. (*Hint*: cokernels)

Exercise 7. Show that in the definition of additive category, (3) can be replaced by "any two objects have a product".

23.09. - 28.09.

Exercise 8. Prove

- the 3×3 Lemma
- $\bullet~$ the 5 Lemma
- the Snake Lemma

for abelian categories. If this turns out to be difficult, restrict to the case of modules over a ring.

30.09. - 26.10.

Exercise 9. Let $L \in Mod R$, M an R-S-bimodule, and $N \in Mod S^{op}$. Show

$$(L\bigotimes_R M)\bigotimes_S N\cong L\bigotimes_R (M\bigotimes_S N).$$

Hint On elementary tensors, the map from left to right should send $(l \otimes m) \otimes n$ to $l \otimes (m \otimes n)$. The main issue is to show that this gives a well-defined map.

Exercise 10. We call two short exact sequences starting in A and ending in B equivalent if there is a commutative diagram

Show:

- This defines an equivalence relation.
- In **Ab**, find all equivalence classes of short exact sequences $- 0 \longrightarrow \mathbb{Z}/(2) \longrightarrow ? \longrightarrow \mathbb{Z}/(3) \longrightarrow 0,$ $- 0 \longrightarrow \mathbb{Z}/(2) \longrightarrow ? \longrightarrow \mathbb{Z}/(2) \longrightarrow 0.$
- In rep $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, find all equivalence classes of short exact sequences

$$- 0 \longrightarrow \bigvee_{0}^{k} \longrightarrow ? \longrightarrow \bigvee_{k}^{0} \longrightarrow 0$$
$$- 0 \longrightarrow \bigvee_{k}^{0} \longrightarrow ? \longrightarrow \bigvee_{0}^{k} \longrightarrow 0$$

08.10. - 26.10.

Exercise 11. Show the *Horseshoe Lemma*:

Given the diagram

in an abelian category, where the horizontal sequence is short exact, both vertical maps are epimorphisms, and Q is projective.

 $\mathbf{2}$

Show that this can be completed to a commutative diagram

where the upper sequence is also exact, and the middle vertical arrow is also an epimorphism.

Exercise 12. Let Q be a finite quiver without oriented cycles. (That is there is no path from one vertex back to the same vertex, except for the lazy path at that vertex.)

- (1) For $i \in Q_0$, let S_i be the representation given by
 - for a vertex j of Q: $S_i(j) = \begin{cases} k & \text{for } j = i \\ 0 & \text{otherwise} \end{cases}$;
 - for an arrow α of Q: $S_i(\alpha) = 0$.

Let R be any non-zero finite dimensional representation of Q. Show that there is $i \in Q_0$ such that there is a monomorphism $S_i \rightarrow R$.

- (2) For $i \in Q_0$, let P_i be the representation given by
 - for a vertex j of Q: $P_i(j) = k^{\{\text{paths from } j \text{ to } i\}}$ (the vector space of formal linear combinations of paths from j to i);
 - for an arrow $\alpha \colon j \longrightarrow j'$:

 $P_i(\alpha) \colon k^{\{\text{paths from } j' \text{ to } i\}} \longrightarrow k^{\{\text{paths from } j \text{ to } i\}}$

is given by composing paths with α .

Show that P_i is a projective object in rep(Q).

- (3) For i ∈ Q₀, let I_i be the representation given by
 for a vertex j of Q: I_i(j) = k^{paths from i to j};
 - for an arrow $\alpha: j \rightarrow j'$:

 $I_i(\alpha): k^{\{\text{paths from } i \text{ to } j'\}} \longrightarrow k^{\{\text{paths from } i \text{ to } j\}}$

is given by sending a path $\alpha_n \cdots \alpha_1$ to $\begin{cases} \alpha_{n-1} \cdots \alpha_1 & \text{if } \alpha_n = \alpha \\ 0 & \text{otherwise} \end{cases}$

Show that I_i is an injective object in rep(Q).

- (4) Let $R \in \operatorname{rep}(Q)$. Show that there is a projective object $P \in \operatorname{rep}(Q)$ such that there is an epimorphism $P \twoheadrightarrow R$. In this situation we say that the category $\operatorname{rep}(Q)$ has enough projectives.
- (5) Let $R \in \operatorname{rep}(Q)$. Show that there is an injective object $I \in \operatorname{rep}(Q)$ such that there is a monomorphism $R \rightarrow I$. In this situation we say that the category $\operatorname{rep}(Q)$ has enough injectives.
- (6) Let $Q = \begin{bmatrix} 2 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$. Find the representations $S_1, S_2, S_3, P_1, P_2, P_3, I_1, I_2$, and I_3 . (That is, write them down as a picture containing a vector

 I_1 , I_2 , and I_3 . (That is, write them down as a picture containing a vecto space in each vertex and a matrix over each arrow.)

28.10. - 02.11.

Exercise 13. Find projective resolutions for all the representations S_i

• of the quiver $Q = [1 \rightarrow 2];$ • of the quiver $Q = \begin{bmatrix} 2 \\ 7 & 3 \\ 1 & 3 \end{bmatrix};$

• of the quiver with relations $(Q, R) = (1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3, \beta \alpha).$

04.11. - 09.11.

Exercise 14. Consider the quiver with relations (Q, R) as in the third point of Exercise 13 above.

- Calculate $\operatorname{Ext}_{\operatorname{rep}(Q,R)}^n(S_i,S_j)$ for all $i,j \in \{1,2,3\}$ and $n \in \mathbb{N}$.
- Show that $\operatorname{Ext}_{\operatorname{rep}(Q,R)}^{n}(M,N) = 0$ for all representations M and N and all $n \ge 3$.

11.11. - 16.11.

Exercise 15. Let A be a finitely generated abelian group. Compute $\operatorname{Hom}_{Ab}(A, \mathbb{Z})$ and $\operatorname{Ext}_{Ab}^{1}(A, \mathbb{Z})$.

Exercise 16. Let \mathscr{A} be a hereditary abelian category. Assume we are given the solid part of the following commutative diagram with exact rows and columns. Show that it is possible to find the dashed part.

Exercise 17. Let (Q, R) be the quiver $Q = [1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{n-1}} n]$ with relations $\alpha_2 \alpha_1, \alpha_3 \alpha_2, \ldots, \alpha_{n-1} \alpha_{n-2}.$

Compute $\operatorname{Ext}_{\operatorname{rep}(Q,R)}^m(S_i,S_j)$ for all $i,j \in \{1,\ldots,n\}, m \in \mathbb{N}$.

17.11. - 23.11.

Exercise 18. The aim of this exercise is to determine the right derived functors of Ker.

Let \mathscr{A} be an abelian category with enough injectives. We also consider the abelian category $\mathscr{M} = \operatorname{rep}_{\mathscr{A}}(1 \leftarrow 2)$ – that is the categories whose objects are morphisms in \mathscr{A} , and whose morphisms are commutative squares.

Now Ker defines a left exact functor $\mathcal{M} \longrightarrow \mathcal{A}$. To determine the right derived functors, proceed as follows:

- (1) Show that for I injective in \mathscr{A} , the representations $I \to 0$ and $I \xrightarrow{\mathrm{id}_I} I$ are injective in \mathscr{M} .
- (2) Use (1) to find an injective resolution of $X \oplus Y \xrightarrow{(0 \ 1)} Y$ in \mathscr{M} . (In terms of the injective resolutions of X and Y.)
- (3) Show that $\mathbb{R}^n \operatorname{Ker}(X \oplus Y \xrightarrow{(0 \ 1)} Y) = 0$ whenever $n \ge 1$.
- (4) For an arbitrary representation $X \xrightarrow{f} Y$, use a short exact sequence

$$0 \longrightarrow \begin{array}{ccc} X & X \oplus Y & Y \\ \downarrow_{f} \longrightarrow & \downarrow_{(0 \ 1)} \longrightarrow & \downarrow_{0} \longrightarrow 0 \\ Y & Y & 0 \end{array}$$

4

to determine
$$\mathbb{R}^n \operatorname{Ker}(X \xrightarrow{f} Y) = 0.$$