HOMOLOGICAL ALGEBRA

STEFFEN OPPERMANN

I. **Quiver representation.** Definitions.

II. Categories, functors, natural transformations. Definitions. Examples, in particular Hom-functors.

III. Equivalences, adjoints, limits. Definitions. Unit and counit of an adjunction. In particular (co)products, (co)equalizers, (co)kernels as examples of (co)limits.

Thm. Right adjoints commute with limits. Left adjoints commute with colimits.

IV. Additive and abelian categories. Definitions. Examples and non-examples. Basic properties.

V. Complexes, homology, exactness.

Definitions. Reformulation of mono/epi in terms of exact sequences. Definition of exact functor, left/right exact functor. Hom **is left exact.** Projective and injective objects.

Characterization of pullback/pushout. 3×3 lemma. 5 lemma. Snake lemma.

VI. Tensor products.

Definition. Existence. Tensor products as functors. Right exactness.

Thm (Hom-tensor adjunction). For L an R-module, M an R-S-bimodule, N an S^{op} -module

 $\operatorname{Hom}_{S}(L \otimes_{R} M, N) \cong \operatorname{Hom}_{R}(L, \operatorname{Hom}_{S}(M, N)).$

VII. Homology and homotopy.

Definitions.

Long exact sequence of homology.

Homotopy category. Homology well-defined on homotopy category. Projective and injective resolutions, these define functors $\mathscr{A} \longrightarrow \mathsf{K}(\mathscr{A})$.

VIII. Derived functors.Definition.Long exact sequence. Ext. Tor.Syzygies. Dimension shift.

IX. Ext and extensions. Definition of Yoneda-Ext. Baer sum.

Thm. If \mathscr{A} has enough injectives then

$$YExt^n_{\mathscr{A}}(X,Y) = Ext^n_{\mathscr{A}}(X,-)(Y).$$

If \mathscr{A} has enough projectives then

 $YExt^n_{\mathscr{A}}(X,Y) = Ext^n_{\mathscr{A}}(-,Y)(X).$

X. (Small) global dimension. Definition of gl.dim, semi-simple, hereditary. Lengths of projective/injective resolutions. mod \mathbb{Z} is hereditary.

XI. Cones, quasi-isomorphisms, balancing Tor and Ext. Definitions. f quasi-iso \iff Cone(f) exact. Double complex. Total complex.

Thm. Let M and N be a left and right R-module. Then

 $\operatorname{Tor}_{n}^{R}(M,-)(N) = \operatorname{Tor}_{n}^{R}(-,N)(M).$

Thm. Assume \mathscr{A} has enough projectives and enough injectives. Then

 $\operatorname{Ext}^n_{\mathscr{A}}(X,-)(Y) = \operatorname{Ext}^n_{\mathscr{A}}(-,Y)(X).$

XII. Triangulated categories. Definitions. Basic properties. $K(\mathscr{A})$ is triangulated.

Thm. If \mathscr{A} has enough projectives then

$$\operatorname{Ext}^{n}_{\mathscr{A}}(X,Y) = \operatorname{Hom}_{\mathsf{K}(\mathscr{A})}(\mathsf{p}X,\mathsf{p}Y[n]).$$

If ${\mathscr A}$ has enough injectives then

 $\operatorname{Ext}^{n}_{\mathscr{A}}(X,Y) = \operatorname{Hom}_{\mathsf{K}(\mathscr{A})}(\mathsf{i}X,\mathsf{i}Y[n]).$

XIII. **Derived categories.** Definition. Roofs and their composition.

Thm.

 $\operatorname{Ext}^{n}_{\mathscr{A}}(X,Y) = \operatorname{Hom}_{\mathsf{D}(\mathscr{A})}(X,Y[n]).$