
EXERCISES

21.08.

Exercise 1. • Describe which morphisms in Set are monomorphisms, epi-
morphisms, split monomorphisms, and split epimorphisms.

• Describe which morphisms in Top are monomorphisms and which mor-
phism are epimorphisms. Find an example of a morphism that is both a
monomorphism and an epimorphism, but not an isomorphism.

• Show that in the category Ring, the inclusion Z Q is both a monomor-
phism and an epimorphism.

Exercise 2. Which of the following functors are full? faithful? dense?

• the natural inclusion Ab Gp;

• forgetting the topology Top Set;

• the Hom-functor HomAb(Z/(2),−) : Ab Set.

Exercise 3. Let X be the poset given by the Hasse diagram
a b

0
that is a > 0

and b > 0 with a and b incomparable.

• Determine all objects F ∈ preshSetX such that F (i) ∈ {∅, {?}} ∀i ∈ X.
• Which of the presheaves determined above are isomorphic to a presheaf of

the form HomCX
(−, i) for some i ∈ X?

28.08.

Exercise 4. Recall that for a group G, we denote by Gop the opposite group, that
is the group with the same elements as G, but multiplication given by g ·oph = h ·g.

• Show that this construction defines a (covariant!) functor Gp Gp.
• Any group G is isomorphic to its opposite group: An isomorphism is given

by g g−1. Investigate if this defines a natural isomorphism idGp −op.

Exercise 5. Let G be a non-trivial group. We can consider the category CG having
only one object ?, with HomCG

(?, ?) = G, and composition of morphisms given by
group multiplication. (Convince yourself that this is a category.)

Consider the following two functors F = HomCG
(?,−) and H : CG Set given

by H(?) = G and H(g) = 1G.
Show that the functors F and H agree on all (i.e. the one) objects, but are not

naturally isomorphic.

Exercise 6. Let X = {a, b, c} with the preorder given a 6 a, a 6 b, a 6 c, b 6 a,
b 6 b, b 6 c, c 6 c. (So a and b violate anti-symmetry). Let Y = {1, 2} with the
natural poset structure (i.e. 1 6 2). Show that the poset categories C(X,6) and
C(Y,6) are equivalent.

More generally, given an arbitrary preordered set X, find a poset Y such that
the cateories C(X,6) and C(Y,6) are equivalent.

0.1. 04.09.

Exercise 7. Find left adjoints to the functors

• forget : Ring Rng, the forgetful functor from rings with multiplicative
unit to rings without multiplicative unit.
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• forget : Ring∗ Ring, where Ring∗ is the category of “pointed rings”,
that is pairs (R, r) of a Ring R and an element r, and morphisms being
ring homomorphisms which send the distinguished element of the first ring
to the distinguished element of the second ring.

Find the unit and counit maps for both the above adjunctions.

Exercise 8. In the category Ab

• Show that the pullback of

L

M N
β

α

is given by

L
∏
N

M = {(l,m) ∈ L⊕M | α(l) = β(m)}

(with the obvious maps to L and M).
• Show that the pushout of

L M

N

β

α

is given by

M
∐
L

N = M ⊕N/{(β(`),−α(`)) | ` ∈ L}.

Exercise 9. Let X be any poset, and F a Set-valued presheaf on X. Show

• that the limit lim←−F exists;
• that the colimit lim−→F exists.

Hint: Construct them explicitly, starting with product and coproduct, respectively.

10.09.

Exercise 10. Let A be an abelian group, S and T two subgroups.

• Show that the pullback of

S

T A
incl.

incl.

is given by S ∩ T .
• Show that the pushout of

A A/S

A/T

proj.

proj.
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is given by A/(S + T ).

Exercise 11. In the category Ab, consider a pullback square

L
∏

N M L

M N

β̂

α̂
β

α

Show that Ker β̂ ∼= Kerβ and Ker α̂ ∼= Kerα.
Hint: Recall the explicit description of the pullback in Exercise 8.

Exercise 12. Let A be a pre-abelian category, and X be a finite poset. Show that
any F ∈ preshA X has a limit and a colimit.

Exercise 13. Let A be a pre-abelian category. Show that the following are equiv- ?
alent:

• A is abelian;
• every monomorphism is a kernel of some morphism, and every epimorphism

is a cokernel of some morphism.

Hint: First show that if a monomorphism is a kernel of some morphism, then it is
in fact a kernel of its cokernel.

18.09.

Exercise 14. Consider an additive category.

• In the situation of the biproduct diagram

X X ⊕ Y Y

ιX

πX

ιY

πY

with idX = πX ◦ ιX , idY = πY ◦ ιY , and idX⊕Y = ιX ◦ πX + ιY ◦ πY : Show
that πY is a cokernel of ιX .

• Let f : X Y be a split monomorphism, and assume f has a cokernel.

Show that there is an isomorphism ϕ : Y X⊕Cok f making the triangle

X Y

X ⊕ Cok f

f

ϕ∼=(
idX
0

)

commutative.

Exercise 15. • Consider the poset

X = {

ω

a b

0

},
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and the morphism of Ab-valued presheaves on it

0

0 Z

Z

0

0 2

0
Z

Z Z

0

.

(Here “2” is short for “the map given by multiplication by 2”.) Check
that this is a morphism. Calculate the kernel, image, and cokernel of this
morphism.

• Convince yourself that in general, for an abelian category A and a poset
X, the presheaf category preshA X is abelian again.

Exercise 16 (3× 3 Lemma). Consider the following diagram with exact rows and
columns.

0 0 0

A B C

0 A′ B′ C ′ 0

0 A′′ B′′ C ′′ 0

0 0 0

Show that A, B, and C also form a short exact sequence fitting into the above
diagram.

Exercise 17 (Salamander lemma). Consider the following diagram in ModR,?
where γβ = 0 and δγ = 0.

A

B C D E

F

α

β γ δ

ε

Show that the sequence

Ker γα
Ker γ

Imβ

Ker εγ

Imα+ Imβ

Ker δ ∩Ker ε

Im γα

Ker δ

Im γ

F

Im εγ

is exact.
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25.09.

Exercise 18. Let X be a poset, and F a field. By Exercise 15 the category
preshmod FX is abelian.

For i ∈ X, we consider the special presheaves Pi and Ii given by

Pi(j) =

{
F if j 6 i

0 otherwise
and Ii(j) =

{
k if j > i

0 otherwise
.

Path I:
Verify directly: Pi is projective and Ii is injective in the category preshmod FX.

Path II:
Consider inclusion ι : {i} X. Show that the induced functor

ι∗ : preshmod FX preshmod F{i} = modF

has a left adjoint L and a right adjoint R.
Check that

• ι∗ is exact;
• Pi = LF and Ii = RF;
• F is both projective and injective in modF.

Conclude that Pi is projective and Ii is injective.

Independent of path: For X = {a > 0 < b}: Find a projective object P and an

epimorphism P I0 in preshmod FX.

Exercise 19. Show that

Z/(n)⊗Z Z/(m) = Z/(gcd(n,m)).

Hint: Recall that (gcd(m,n)) = (m,n).

Exercise 20. Let A be an abelian category, and A an object in A . Convince ?
yourself that HomA (A,−) defines a functor A ModR, where R = EndA (A).

Now assume that for any object X ∈ A , the R-module HomA (A,X) is finitely

generated. Show (without using Freyd-Mitchell), that HomA (A,−) : A modR
has a left adjoint.

Hints:

• Show that HomA (A,−) induces an equivalence between the subcategories
{An | n ∈ N} ⊆ A and {Rn | n ∈ N} ⊆ modR.

• Show that HomA (A,X) is finitely presented as R-module.

16.10.

Exercise 21. Let A• ∈ C(A ) be a complex such that Hi(A•) = 0 for all negative ?�
i. Show that there is a complex B• such that Bi = 0 for all negative i, and a

quasi-isomorphism A• B•.

Hint: You can take Bi = Ai for all positive i. What is a good choice for B0?

Exercise 22. Let f• : A• B• be a morphism of complexes. Show thatB• Cone(f•)
is a weak cokernel of f• in the homotopy category K(A ).
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That is, the compositionA•
f•

B• Cone(f•) is zero, and for any g• : B• C•

such that g• ◦ f• = 0 in K(A ) there is a (not necessarily unique) factorization

A• B• Cone(f•)

C•

f•

g•

Exercise 23. Calculate

• ExtnZ(Z/(a),Z/(b)) for alle a, b, n ∈ N;
• Extnpreshmod F{1<2}(I2, P1) for all n ∈ N;

• Extnpreshmod F X
(Iω, P0) for all n ∈ N, where X is the poset from Exercise 15.

Exercise 24. Let A be an abelian category with enough injectives. We consider?
the category of morphisms in A ,

mor(A ) = preshA {1 < 2}.

• Convince yourself that Ker defines a left exact functor mor(A ) A .
• Find out what the right derived functors Rn Ker are.

Hint: First consider the case that the morphism in question is an epimorphism.
Then generalize to arbitrary morphisms using a short exact sequence in mor(A )
where the other two objects are epimorphisms.

23.10.

Exercise 25. Let R as below, and S be the R-module which is F as F-vector space,
with all variables acting as 0. Calculate all ExtnR(S, S) for n > 0.

• R = F[X];
• R = F[X]/(X3);
• R = F[X,Y ];
• R = F[X,Y ]/(XY ).

Exercise 26. Find short exact sequences representing all elements of YExt1Ab(Z/(4),Z/4).

Exercise 27. Let A be an abelian category. Let A• ∈ C(A ). Show that A• ∼= 0?�
in K(A ) if and only if A• is isomorphic to a complex of the form

· · ·
( 0 0
1 0 )

B−1 ⊕B0
( 0 0
1 0 )

B0 ⊕B1
( 0 0
1 0 )

B1 ⊕B2
( 0 0
1 0 )

· · · .
Hint: For the “only if” direction, consider the short exact sequences

0 Bn(A•) An Bn+1(A•) 0.

Exercise 28 (A short spectral sequence). Consider a double complex X•,• with?
Xm,n = 0 unless m,n ∈ {−1, 0} – that is essentially a commutative square

X−1,−1 X0,−1

X−1,0 X0,0

d−1,−1
h

d−1,0
h

d−1,−1
v d0,−1

v

We consider the kernels and cokernels of the horizontal maps, and denote by

k : Ker d−1,−1h Ker d−1,0h and c : Cok d−1,−1h Cok d−1,0h the kernel and cok-
ernel morphism, respectively.
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Show that

• H−2(Tot(X•,•)) = Ker k;

• There is a short exact sequence Cok k H−1(Tot(X•,•)) Ker c;

• H0(Tot(X•,•)) = Cok c.

30.10.

Exercise 29. Let R = F[X,Y ]/(XY ) for some field F, and M = R/(X). Calculate
ExtnR(M,M) for all n ∈ N.

Exercise 30. Let R = F[X,Y ]/(XY ) for some field F. Consider the double com-
plex X•,• given by

Xm,n = R, dm,n
h = dm,n

v =

{
X if m+ n even

Y if m+ n odd
.

Show that all rows and all columns of X•,• are exact, but its total complex is not
exact.

Exercise 31. Let R be a ring, and X•,• a double complex of R-modules. assume
that Xm,n = 0 whenever n > 0. (That is X•,• is concentrated on the upper half
plane.) Show that if all rows of X•,• are exact then so is its total complex.

Exercise 32. Let A be an abelian category with enough projectives. Consider ?�
two short exact sequences C F B and B E A.

Assume that Ext2A (A,C) = 0.
Show that there is an object X completing the following diagram as indicated

by the dashed arrows.

C F B

C X E

A A

(That is, in the resulting diagram all squares commute and all rows and columns
are short exact sequences.)

06.11.

Exercise 33. Let A be an abelian category with enough projectives. Show that
gl.dim A 6 2 if and only if any morphism between projectives has a projective
kernel.

Exercise 34. Let A ba an abelian category with enough projectives. Show that ?
gl.dim preshA {1 < 2} = gl.dim A + 1.

Exercise 35. Let T be a triangulated category, and X Y Z X[1] a dis-

tinguished triangle. Assume the map Z X[1] is 0. Show that the (rest of the)
triangle then is a split short exact sequence.

Exercise 36. Let T be a triangulated category. Assume that T is in addition
abelian. Show that T is semisimple.
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13.11.

Exercise 37. Let A be an abelian category. Show that any complex is isomorphic
to its homology in K(A ) if and only if A is semisimple.

(Here the homology of a complex X• is considered as the complex

· · ·
0

H−1(X•)
0

H0(X•)
0

H1(X•) · · · .)

Exercise 38. Let T be a triangulated category, and C F B
f
C[1] and

B E A
g
B[1] two distinguished triangles. Assume the composition f [1] ◦

g : A C[2] vanishes. Show that there is an object X and morphisms as indicated
by the dashed arrows below, such that the diagram commutes and the new row and
new column are distinguished triangles too.

C F B C[1]

C X E C[1]

A A

F [1] B[1]

(Compare to Exercise 32.)

Exercise 39. Let T be a triangulated category, and U be a triangulated subcat-?
egory. (That is a full subcategory closed under [1] and [−1], and such that the cone
of any morphism in the subcategory is in U again.)

Let S be the collection of all morphisms in T , whose cone lies in U .
Show that (up to set theoretical issues) one can define a triangulated category

S −1T making all morphisms in S invertible in the same way as we defined the
derived category in the lectures.


