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1 Introduction

Connections

Homological algebra

Algebraic topology Algebraic geometry Representation theory

simplicial homology;
singular homology

sheaf cohomology;
extensions of sheaves

extensions of modules

Example 1.1. Let f : A B be a surjective map, and g : X B any map.

One may ask if there is a map h : X A such that g = f ◦ h.

• If we are just talking about sets, and maps, the answer is “yes”: for any
x ∈ X pick a preimage of g(x).

• If we are talking about vector spaces and linear maps the answer is also
“yes”: find a basis of X, then pick a preimage of g(x) for any basis element
x.

• If we are talking about abelian groups and linear maps the answer is
“sometimes”:

– Let A = Z/(4), B = X = Z/(2), and let f be the natural projection
and g the identity. Then there is no linear map h such that g = f ◦h.

– Let A = Z/(6), B = X = Z/(2), and let f be the natural projection
and g the identity. Then there is a linear map h such that g = f ◦ h,
given by sending the residue class of 1 to the residue class of 3.

We will see: The obstruction to finding h is measure by the group Ext1. (In
the examples above we have Ext1vector spaces = 0, and Ext1Z(Z/(2)Z/3) = 0, but

Ext1Z(Z/(2),Z/(2)) 6= 0.)
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Chapter I

General categories

2 Definition

In many situations in algebra (but also other parts of mathematics) we consider
some type of structures, say vector spaces, groups, rings, or similar. Typically
these are sets with some additional properties or structure. When studying
these kind of situations, there are two basic ingredients: We study the objects
having the desired structure themselves, and we study maps between objects
which preserve the structure (i.e. linear maps, group homomorphisms, ring ho-
momorphisms, . . . ). The concept of a category axiomatizes this.

Definition 2.1. A category C consists of

• a class of objects ObC ;

• for any two objects X and Y a set of morphisms HomC (X,Y );

• for any three objects X, Y , and Z, a multiplication map

HomC (Y, Z)×HomC (X,Y ) HomC (X,Z) : (f, g) f ◦ g.

such that

• for any object X there is a morphism idX ∈ HomC (X,X) such that

∀Y ∈ ObC ∀f ∈ HomC (X,Y ) : f ◦ idX = f,

∀Y ∈ ObC ∀f ∈ HomC (Y,X) : idX ◦f = f.

5



6 CHAPTER I. GENERAL CATEGORIES

• multiplication is associative, that is for any objects X,Y, Z, and W and
f ∈ HomC (X,Y ), g ∈ HomC (Y,Z), and h ∈ HomC (Z,W ) we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Remark 2.2. Often HomC is just all maps with some additional nice property.

Example 2.3. • C = Set:

ObSet = {sets}, and

HomSet(X,Y ) = {maps form X to Y }.

• C = Gp:

ObGp = {groups}, and

HomGp(G,H) = {group homomorphisms G to H}.

• C = Ab:

ObAb = {Abelian groups}, and

HomAb(G,H) = {group homomorphisms G to H}.

• C = Top:

ObTop = {topological spaces}, and

HomTop(X,Y ) = {continuous maps X to Y }.

• For a ring R, C = ModR:

ObModR = {right R-modules}, and

HomModR(M,N) = {R-module homomorphisms M to N}.

• For a ring R, C = modR:

ObmodR = {finitely generated right R-modules}, and

HommodR(M,N) = HomModR(M,N).

Observation 2.4. For a category C , one can define the opposite category C op

by ObC op = ObC , and HomC op(X,Y ) = HomC (Y,X), together with the mul-
tiplication rule f ◦C op g = g ◦C f .
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One simple toy example of categories is the following

Construction 2.5. Let (X,6) be a poset. The poset category C(X,6) is defined
by

ObC(X,6) = X, and

HomC(X,6)
(x, y) =

{
{ιyx} if x 6 y

∅ otherwise,

where ιzy ◦ ιyx = ιzx whenever x 6 y 6 z.
More generally, this construction works for a preordered set, that is a set

with an order that is not necessarily anti-symmetric.

Definition 2.6. A subcategory S of a category C consist of

• A subclass ObS of ObC ;

• for every S, T ∈ ObS , a subset HomS (S, T ) ⊆ HomC (S, T );

such that the identity on any object in S is a morphism in S , and compositions
of morphisms in S are morphisms in S again.

The subcategory S ⊆ C is called full if for all S, T ∈ ObS , HomS (S, T ) =
HomC (S, T ).

Example 2.7. • Ab is a full subcategory of Gp.

• For a poset (X,6), and Y ⊆ X with induced poset structure, the poset
category C(Y,6) is a full subcategory of C(X,6).

Definition 2.8. A morphism f ∈ HomC (X,Y ) is called

• monomorphism, if for any W and any g, h ∈ HomC (W,X) such that
f ◦ g = f ◦ h we have g = h;

• epimorphism if for any Z and any g, h ∈ HomC (Y,Z) such that g◦f = h◦f
we have g = h;

• split monomorphism (also called section) if there is g ∈ HomC (Y,X) such
that g ◦ f = idX ;

• split epimorphism (also called retraction) if there is g ∈ HomC (Y,X) such
that f ◦ g = idY ;
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• isomorphism if there is g ∈ HomC (Y,X) such that g ◦ f = idX and
f ◦ g = idY .

We often denote monomorphisms by arrows , and epimorphisms by ar-

rows .

Exercise 2.9. Show that

• Any split monomorphism is a monomorphism.

• Any split epimorphism is an epimorphism.

• The following are equivalent, for a morphism f :

– f is an isomorphism;

– f is a split monomorphism and an epimorphism;

– f is a monomorphism ans a split epimorphism.

• If f is an isomorphism, the the g in the definition above is uniquely de-
termined. We denote it by f−1.

Example 2.10. • In Set: monomorphism are split monomorphisms are
injective maps; epimorphisms are split epimorphisms are surjective maps;
isomorphisms are bijective maps.

• For a poset (X,6), all morphisms in the poset category C(X,6) are both
mono- and epimorphisms. However, only identities are split monomor-
phisms or split epimorphisms.

In particular being a mono- and an epimorphism does not imply being an
isomorphism.

3 Functors

Definition 3.1. Let C and D be categories. A covariant functor F from C to
D consists of

• a map ObC ObD : X FX, and

• for any X,Y ∈ ObC , a map HomC (X,Y ) HomD(FX, FY ), also de-
noted by F,
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such that

• for any X ∈ ObC we have F idX = idFX , and

• for any composable morphisms f and g in C we have F(g ◦ f) = Fg ◦ Ff .

A contravariant functor from C to D is a covariant functor from C op to D .

In other words, it consists of maps HomC (X,Y ) HomD(FY, FX), and the
composition rule is F(g ◦ f) = Ff ◦ Fg.

Example 3.2. • Let S be a subcategory of C . Then inclusion S C is
a (covariant) functor.

• Let C be a category, and X be an object. Then HomC (X,−) defines
a functor from C to Set: For any object Y ∈ ObC , we obtain a set
HomC (X,Y ) by definition of category. For a morphism f ∈ HomC (Y1, Y2)
we define HomC (X, f) by

HomC (X, f) : HomC (X,Y1) HomC (X,Y2) : g f ◦ g.

This functor is called the covariant Hom-functor .

• Similarly one defines the contravariant Hom-functor HomC (−, X).

• For two posets (X,6) and (Y,6), a functor between the poset categories

is given by an order-preserving map X Y .

• Forming fundamental groups gives a functor Top∗ Gp from pointed
topological spaces to groups.

Definition 3.3. A functor F : C D is called

• faithful if for any X,Y ∈ ObC the map HomC (X,Y ) HomD(FX, FY )
is injective;

• full if for any X,Y ∈ ObC the map HomC (X,Y ) HomD(FX, FY ) is
surjective;

• dense if for any D ∈ ObD there is C ∈ ObC such that D ∼= FC.
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Example 3.4. • For an order preserving map f between two posets X and
Y , the associated functor between the poset categories is always faithful.
It is full if the images of two points are only comparable in Y if the two
points already were comparable in X. It is dense if and only if the map is
surjective.

• The forgetful functor Gp Set is faithful, but neither full nor dense.

Definition 3.5. Let X and C be categories. A C -valued presheaf on X is a
functor

X op C .

We denote by preshC X the collection of all C -valued presheaves on X .
By abuse of notation, for a poset (X,6), we say a presheaf on (X,6) is a

presheaf on the poset category C(X,6).

More explicitly, a C -valued presheaf F on a poset (X,6) consist of

• for every x ∈ X, an object Fx ∈ ObC ;

• for every x, y ∈ X, such that x 6 y, a morphism resyx ∈ HomC (Fy, Fx);

such that resxx = idFx
, and resyx ◦ reszy = reszx, whenever x 6 y 6 z.

Remark 3.6. Depending on the setup, and preferences of different authors,
various different notations are being used in the literature. These include
Fun(X op,C ), and, in partticular in the case of posets, “representations of X
in C ”.

This name “presheaves” which we will use here originates in the following
example.

Example 3.7. Let T be a topological space, and X the set of open subsets of
T . Then X is a poset with inclusion as partial order. Let S be a set (possibly
with some extra structure, for instance S = R or S = C).

Then we obtain a Set-valued presheaf F on X by setting F (U) to be all
(nice) functions from U to S. Here the restriction morphisms are restriction of
functions to a smaller open subset of T .

4 Natural transformations

Definition 4.1. Let C and D be categories, and F and G be functors from C
to D . A natural transformation η form F to G consists of
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• for every C ∈ ObC a morphism ηC ∈ HomD(FC, GC),

such that for any morphism f ∈ HomC (C1, C2) the we have

ηC2 ◦ Ff = Gf ◦ ηC1 ,

that is the following diagram commutes in D :

FC1 GC1

FC2 GC2

Ff

ηC1

ηC2

Gf

A natural transformation η is called natural isomorphism if all the ηC are
isomorphisms in D .

Example 4.2. Let R be a ring. We denote by −∗ = HomR(−, R) the dual-

ity ModR ModRop with respect to the ring. Then −∗∗ defines a functor

ModR ModR, and we have a natural transformation given by evaluation:

ev : idModR −∗∗

evM (m) = [M∗ 3 φ φ(m) ∈ R] ∈ HomR(M∗, R).

For R = F a field, we note that −∗∗ also defines a functor modF modF
between the categories of finite dimensional modules, and the induced natural
transformation

ev : idmod F −∗∗

is a natural isomorphism.

Observation 4.3. Let X be a category, such that the objects form a set. (Such
a category is called small .)

Then, for an arbitrary category C and functors F, G : X C the collection
of natural transformations from F to G forms a set. (In fact, it is a subset of
×X∈ObX HomC (FX, GX).)

Thus, for a small category X , the C -valued presheaves on X form a cate-
gory, with

HompreshC X (F1, F2) = {natural transformations F1 F2}.

Obviously natural isomorphisms are precisely the isomorphisms in preshC X .
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Example 4.4. Let (X,6) be a poset, C a category, and F1 and F2 C -valued
presheaves on X.

A morphism f : F1 F2 consists of morphisms fx : (F1)x (F2)x for any
x ∈ X, such that resyx ◦fy = fx ◦ resyx whenever x 6 y. (Note that here the left
restriction refers to the structure of F2, while the right restriction comes from
the structure of F1.)

Example 4.5. • Let X = {1} be the poset with just one element. Then
preshC X = C .

• Let X = {1 6 2} be the poset with two comparable elements. Then the
objects of preshC X are morphisms in C , and morphisms of presheaves
are pairs of morphisms between domains and codomains, such that the
resulting square commutes.

• Let X be the poset given by the Hasse diagram

ω

a b

0

The objects of preshC X are commutative squares in C . (Note that we
don’t need to specify resω0 , since resω0 = resa0 ◦ resωa = resb0 ◦ resωb .)

Theorem 4.6 (Yoneda Lemma). Let C be a category, C ∈ ObC , and F a

functor C Set. Then the map

Y : {natural transformations HomC (C,−) F} FC

η ηC(idC)

is a bijection. In particular the natural transformations from HomC (C,−) to F

form a set.

Proof. We construct a map in the opposite direction. That is, given an element

x ∈ FC, we construct a natural transformation ζx : HomC (C,−) F. For
D ∈ ObC we set

ζxD : HomC (C,D) FD : f (Ff)(x).

(Note that Ff ∈ HomSet(FC, FD), so this makes sense.)
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Let us first check that ζx is a natural transformation. Let g ∈ HomC (D1,D2).
We have

ζxD2
◦HomC (C, g) = [f (Ff)(x)] ◦ [f g ◦ f ]

= [f (F(g ◦ f))(x)]

= F(g) ◦ [f (Ff)(x)]

= F(g) ◦ ζxD1

We immediately see that

Y (ζx) = ζxC(idC) = (F idC)(x) = idFC x = x.

It remains to see that for any natural transformation η : HomC (C,−) F

we have η = ζY (η). So Let D ∈ ObC . Then

ζ
Y (η)
D = [f (Ff)(Y η)]

= [f (Ff ◦ ηC)(idC)]

= [f (ηD ◦HomC (C, f))(idC)] (η is a natural transformation)

= [f ηD(f)]

= ηD.

Corollary 4.7 (Yoneda embedding). Let X be a small category. Then the
functor

Y : X preshSet X : X HomX (−, X)

is fully faithful.

5 Equivalences of categories

Definition 5.1. A functor F : C D is called an equivalence if there is a

functor G : D C such that F ◦ G ∼=
nat

idD and G ◦ F ∼=
nat

idC .

Theorem 5.2. A functor F : C D is an equivalence if and only if it is full,
faithful, and dense.
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Proof. Assume first that F is an equivalence, and let G as in the definition.

Let η : G ◦ F idC be a natural isomorphism. Then for any morphism
f ∈ HomC (C1, C2) we have the commutative square

GFC1 C1

GFC2 C2

GFf

ηC1

ηC2

f

Thus f = ηC2
◦ GFf ◦ η−1C1

is uniquely determined by Ff . That is F is faithful.

Let ζ ba a natural isomorphism F◦G idD . In particular for any D ∈ ObD

we have an isomorphism ζD : FGD D, showing that F is dense.
To see that F is full, let f ∈ HomD(FC1, FC2). Using the natural isomor-

phisms η and ζ as above, we construct the commutative diagram

FC1 FGFC1 FC1

FC2 FGFC2 FC2

f g h

FηC1

FηC2

ζFC1

ζFC2

where g and h are the unique maps making the squares commutative. By
naturality of ζ we know that g = FGh, and thus the commutativity of the left
hand square gives us that

f = FηC2
◦ FGh ◦ (FηC1

)−1

= F(ηC2 ◦ Gh ◦ η−1C1
)

showing that f is in the image of F.

Now assume conversely that F is full, faithful, and dense. By (a strong
version of) the axiom of choice, and since F is dense, we may fix, for any D ∈
ObD , an object GD in C and an isomorphism ζD : FGD D. For a morphism
f ∈ HomD(D1, D2) we use the bijection

HomC (GD1, GD2) HomD(FGD1, FGD2)
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induced by F (since it is full and faithful), and define Gf to be the preimage of
ζ−1D2
◦ f ◦ ζD1

.
We claim that the above makes G a functor from D to C . Firstly we have

G idD = F−1(ζ−1D ◦ idD ◦ζD) = F−1(idFGD) = idGD .

Secondly, for morphisms D1

f
D2

g
D3,

G(g ◦ f) = F−1(ζ−1D3
◦ g ◦ f ◦ ζD1) = F−1(ζ−1D3

◦ g ◦ ζD2
◦ ζ−1D2

f ◦ ζD1
)

= F−1(ζ−1D3
◦ g ◦ ζD2

) ◦ F−1(ζ−1D2
f ◦ ζD1

) = Gg ◦ Gf.

Next we claim that ζ defines a natural isomorphism F ◦ G idD . Let f ∈
HomD(D1, D2). Then

ζD2
◦ FGf = ζD2

◦ ζD2
−1 ◦ f ◦ ζD1 = f ◦ ζD1 .

Finally, we construct a natural isomorphism η : G◦F idC . First note that
ζ induces mutually inverse natural isomorphisms

ζF− : F ◦ G ◦ F F and ζ−1F− : F F ◦ G ◦ F.

Since F is fully faithful, we can find unique morphisms ηC : GFC C and

η−C : C GFC such that

ζFC = FηC and ζ−1FC = Fη−C .

If follows that η is a natural transformation, with inverse η−.

Example 5.3. Let F be a field.
Let MatF be the category given by

ObMatF = N0, and

HomMatF(m,n) = {n×m-matrices over F}

with matrix multiplication.
Let modF be the category of finite dimensional F-vector spaces, with F-

vector space homomorphisms as morphisms.

Then the natural functor MatF modF sending n to Fn is an equivalence.
We observe that constructing an equivalence in the other direction amounts

to choosing a basis for every finite dimensional F-vector space.



16 CHAPTER I. GENERAL CATEGORIES

6 Adjoint functors

Definition 6.1. Let C and D be categories, and F : C D and G : D C
functors. We say that (F, G) is an adjoint pair if the functors

HomD(F−,−) and HomC (−, G−) : C op ×D Set

are naturally isomorphic.

Example 6.2. Let (X,6) be a poset, and C a category. For x ∈ X we have a
natural projection functor

πx : preshC X C : F Fx.

We may also consider the diagonal functor ∆: C preshC X given by
∆(C)x = C for any x ∈ X, and resxy = idC for any y 6 x.

If (X,6) has a smallest element 0, then (π0,∆) is an adjoint pair. Similarly,
if there is a largest element ω, then (∆, πω) is an adjoint pair.

Example 6.3 (Free modules). Let R be a ring. Then we have the forgetful

functor f : ModR Set.

We construct a left adjoint R(−) : Set ModR: For a set X,

R(X) = {functions f : X R | f(x) 6= 0 for only finitely many x ∈ X}.

For a map ϕ : X Y we set

R(f) : R(X) R(Y ) : f

y ∑
x∈ϕ−1(y)

f(x)

 .
We claim that R(−) is left adjoint to f.
For x ∈ X, we let

χx : X R : y

{
1 if y = x

0 if y 6= x
.

Then χx ∈ R(X).
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Now we can define the mutually inverse natural transformations by

HomSet(X, fM) HomR(R(X),M)

ϕ [f
∑
x∈X

ϕ(x) · f(x)]

[x ψ(χx)] ψ

(Note that the sum in the second line is finite, since f(x) = 0 for almost all
x ∈ X.)

Example 6.4. Consider the forgetful functor f : Ab Gp. This functor has
a left adjoint, given by forming commutator factor groups.

Proposition 6.5 (Unit-counit adjunction). Let F : C D and G : D C be
two functors. Then the following are equivalent:

1. (F, G) is an adjoint pair.

2. there are natural transformations η : idC G ◦ F and ε : F ◦ G idD

(called unit and counit, respectively), such that

idF = εF− ◦ Fη and idG = Gε ◦ ηG−,

i.e. for any C ∈ ObC and D ∈ ObD

idFC = εFC ◦ FηC and idGD = GεD ◦ ηGD.

Proof. Let α : HomD(F−,−) HomC (−, G−) be a natural transformation.

Then we may define a natural transformation η : idC G ◦ F by

ηC = αC,FC(idFC).

To check that this defines a natural transformation, note that for a morphism
f ∈ HomC (C1, C2) we have

GFf ◦ ηC1
= GFf ◦ αC1,FC1

(idFC1
)

= αC1,FC2
(Ff)

= αC2,FC2
(idFC2

) ◦ f
= ηC2

◦ f,



18 CHAPTER I. GENERAL CATEGORIES

where the middle two equalities follow from the naturality of α in the second
and first argument, respectively.

Conversely, given a natural transformation η : idC G ◦ F we can define a

natural transformation α : HomD(F−,−) HomC (−, G−) by

αC,D(f) = G(f) ◦ ηC .

It is immediately checked that these two constructions are mutually inverse.
Similarly, we obtain a bijection between natural transformations

β : HomC (−, G−) HomD(F−,−) and ε : F ◦ G idD ,

sending β to the natural transformation given by εD = βGD,D(idGD).
Now let α and η and β and ε correspond to each other as above. Then

β ◦ α = idHomD(F−,−)

⇐⇒ ∀C ∈ ObC ∀D ∈ ObD : βC,D ◦ αC,D = idHomD(FC,D)

Moreover, since any morphism from FC to D is a multiple of idFC

⇐⇒ ∀C ∈ ObC : βC,FC ◦ αC,FC(idFC) = idFC

and, inserting αC,FC(idFC) = G(idFC) ◦ ηC = ηC , and βC,FC(ηC) = εFC ◦ F(ηC),
we obtain

⇐⇒ ∀C ∈ ObC : εFC ◦ F(ηC) = idFC

⇐⇒ εF− ◦ Fη = idF .

Similarly one can see that α ◦ β = idHomC (−,G−) if and only if Gε ◦ ηG− =
idG.

7 Limits

Definition 7.1. Let X be a small category (which we think of as indices, in
some sense), and C an arbitrary category. We denote by ∆ the functor

∆: C preshC X : C ∆C,

where ∆C is the functor sending any object of X to C, and any morphism to
idC .

Let F ∈ ObpreshC X .
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• a limit (or inverse limit, projective limit) of F is an object lim←−F ∈ ObC ,
together with a natural isomorphism

HomC (−, lim←−F ) ∼= HompreshC X (∆−, F )

of functors C op Set;

• a colimit (or direct limit, injective limit) of F is an object lim−→F ∈ ObC ,
together with a natural isomorphism

HomC (lim−→F,−) ∼= HompreshC X (F,∆−)

of functors C Set.

Observation 7.2. Note that a limit of F can equivalently be characterized as

an object lim←−F ∈ ObC , together with morphisms ϕx : lim←−F Fx such that

f ◦ϕx = ϕy for any f : x y ∈X , which is universal in the following sense: for

any other object C, together with maps ψx : C Fx such that f ◦ψx = ψy for

any f : x y ∈X there is a unique map Ψ: C lim←−F such that ψx = ϕx ◦Ψ
for all x ∈ ObX .

The dual description holds for colimits.

Proposition 7.3. Let F ∈ ObpreshC X as above. If a limit lim←−F exists, then
it is unique up to (unique) isomorphism. If a colimit lim−→F exists, then it is
unique up to (unique) isomorphism.

Therefore it makes sense to speak about the limit or colimit.

Proof. Let (L,ϕx) and (L′, ϕ′x) be two limits. Then, by the universal property

for L, there is a morphism Ψ: L′ L such that ϕ′x = ϕx ◦Ψ. By the universal

property for L′ there is a morphism Ψ: L L′ such that ϕx = ϕ′x ◦Ψ′.
Now, again by the universal property of L, there exists a unique morphism

Φ: L L such that ϕx = ϕx ◦ Φ. But we know two candidates for Φ: idL and
Ψ ◦ Ψ′. It follows that Ψ ◦ Ψ′ = idL. Similarly one sees that Ψ′ ◦ Ψ = idL′ . It
follows that Ψ and Ψ′ are mutually inverse isomorphisms.

Observation 7.4. If any F ∈ preshC X has a limit, then lim←− defines a functor

preshC X C , and this functor is right adjoint to ∆.

If any F ∈ preshC X has a colimit, then lim−→ gives a functor preshC X C ,
and this functor is left adjoint to ∆.
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Example 7.5. Let (X,6) be a poset with a smallest element 0. Then we have
seen in Example 6.2 that

lim−→ = π0 : preshC X C : F F0.

Similarly, if X has a largest element ω, then lim←− = πω.

Definition 7.6 (Product and coproduct). Let X be a set. We may regard X
as a poset with trivial poset structure. Let C be a category, and F ∈ preshC X.
(That is F is a collection of objects Fx, one for each x ∈ X.)

• If the limit lim←−F exists, then it is called product of the objects Fx, and
denoted by

∏
x∈X Fx.

• If the colimit lim−→F exists, then it is called coproduct of the objects Fx,
and denoted by

∐
x∈X Fx.

Example 7.7. In the category Set, products are cartesian products, and co-
products are disjoint unions.

Example 7.8. In ModR, both finite products and finite coproducts are given
by direct sums.

Definition 7.9 (Pullback and pushout). Let X be the poset given by the Hasse
diagram

a b

0

Let F ∈ preshC X. If the limit lim←−F exists, then it is called the pullback (or
fibre product) of F , and denoted by Fa

∏
F0

Fb.

By abuse of notation we also call the commutative square

Fω Fa

Fb F0

a pullback, provided Fω is the pullback of the rest of the diagram.
More explicitly, a pullback is a commutative square as above, such that for

any other X with morphisms X Fa and X Fb making a similar square
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commutative, there is a unique morphism X Fω making the two triangles in
the following diagram commutative.

X

Fω Fa

Fb F0

Let Y be the poset given by the Hasse diagram

ω

a b

Let F ∈ preshC X. If the colimit lim−→F exists, then we call it the pushout of F ,
and denote it by Fa

∐
Fω

Fb.

Example 7.10. In the category Set, the pullback of

Fa Fb

F0

is given by

Fa
∏
F0

Fb = {(a, b) ∈ Fa × Fb | resa0(a) = resb0(b)}.

The pushout of
Fω

Fa Fb

is given by

Fa
∐
Fω

Fb = Fa
∐

Fb/(resωa (x) ∼ resωb (x) | x ∈ Fω).



22 CHAPTER I. GENERAL CATEGORIES

8 Limits and adjoint functors

Construction 8.1. Let F : C D be a functor, and X be a small category.

Then F induces a functor Fpresh : preshC X preshD X .

Lemma 8.2. Let (F, G) be an adjoint pair of functors between categories C and
D . Let X be a small category.

Then the corresponding functors between presheaf categories

Fpresh : preshC X preshD X and Gpresh : preshD X preshC X

also form an adjoint pair.

Proof. We have a natural isomorphism η : HomD(F−,−) HomC (−, G−), i.e.

a collection of bijections ηX,Y : HomD(FX,Y ) HomC (X, GY ) such that

• for any f : X X ′ ∈ C we have a commutative square

HomD(FX,Y ) HomD(X, GY )

HomD(FX ′, Y ) HomD(X ′, GY )

ηX,Y

ηX′,Y

HomD(Ff, Y ) HomC (f, GY )

that is for any ϕ : FX ′ Y ∈ D we have

ηX,Y (ϕ ◦ Ff) = ηX′,Y (ϕ) ◦ f.

• similarly, for any g : Y Y ′ ∈ D and any ϕ ∈ HomD(X,Y ) we have

Gg ◦ ηX,Y (ϕ) = ηX,Y ′(g ◦ ϕ).

Now we observe that

HompreshD X (FpreshS, T )

={(fx)x∈ObX ∈×
x∈ObX

HomD(FSx, Tx) | ∀α ∈ HomX (x, y) : fx ◦ FSα = Tα ◦ fy}

Now fx◦Sα and Tα◦fy are morphisms from FSy to Tx. Since ηSy,TX
is a bijection

we may replace the conditions above by ηSy,TX
(fx ◦ FSα) = ηSy,Tx(Tα ◦ fy).
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Now note that by the two bullet points above the left hand side is equal to
ηSx,Tx

(fx) ◦ Sα, while the right hand side is equal to GTαηSy,Ty
(fy). Thus,

writing gi for ηSx,Tx(fx), the above set is in bijection to

{(gx)x∈ObX ∈×
x∈ObX

HomC (Sx, GTx) | ∀α ∈ HomX (x, y) : gx ◦ Sα = GTα ◦ gy}

= HompreshC X (S, GpreshT )

Theorem 8.3. Let (F, G) be an adjoint pair of functors between categories C
and D . Let X be a small category.

• Let X ∈ preshD X such that lim←−X exists. Then

lim←− GpreshX = G lim←−X.

(In particular this limit also exists.)

• Let X ∈ preshC X such that lim−→X exists. Then

lim−→ FpreshX = F lim−→X.

Motto: Right adjoints commute with limits, left adjoints commute with colim-
its.

Proof. We only prove the first claim, the second one is dual.
We have

HomC (−, G lim←−X) ∼= HomD(F−, lim←−X)

∼= HompreshD X (∆F−, X)

= HompreshD X (Fpresh∆−, X)

= HompreshC X (∆−, GpreshX).

Example 8.4. Consider the adjoint pair (R(−), f) between ModR and Set
from Example 6.3. We note that

R(X
∐
Y ) = R(X) ⊕R(Y ) and f(M ⊕N) = fM × fN
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by Theorem 8.3 above. (Of course in this example we could also have checked
that directly.)

However in general neither

R(X×Y ) = R(X) ×R(Y ) nor f(M ⊕N) = fM
∐

fN.



Chapter II

Additive and abelian
categories

9 Additive categories

Definition 9.1. A pre-additive category is a category A such that all Hom-sets
are abelian groups, and composition of morphisms is bilinear.

An additive category is a pre-additive category A such that

• there is a zero-object , i.e. an object 0 such that for any X ∈ ObA both
HomA (X, 0) and HomA (0, X) contain precisely one morphism.

• for any X,Y ∈ ObX there is a biproduct , i.e. an object X ⊕ Y with
morphisms

X X ⊕ Y Y

ιX

πX

ιY

πY

such that

idX = πX ◦ ιX , idY = πY ◦ ιY , and idX⊕Y = ιX ◦ πX + ιY ◦ πY .

Example 9.2. • Ab is an additive category.

25
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• For a ring R, the category ModR is additive.

• Set and Top are not additive categories.

• For any small category X , and any additive category A , the category
preshA X is additive.

Observation 9.3. In the situation of the biproduct diagram, we have

πY ◦ ιX = πY ◦ ιX ◦ πX︸ ︷︷ ︸
=idX⊕Y −ιY ◦πY

◦ιX = πy ◦ ιX − πY ◦ ιY︸ ︷︷ ︸
=idY

◦πY ◦ ιX = 0,

and similarly

πX ◦ ιY = 0.

Lemma 9.4. Let A be an additive category. Then, for any two objects X and
Y , the biproduct X ⊕ Y is a product and a coproduct of X and Y .

Proof. We show that X ⊕ Y is a product, the proof that it is a coproduct is
dual.

We have to show that for any maps fX : H X and fY : H Y there is

precisely one map f : H X ⊕ Y such that πX ◦ f = fX and πY ◦ f = fY .

We see that

f = idX⊕Y ◦f = ιX ◦ πX ◦ f + ιY ◦ πY ◦ f = ιX ◦ fX + ιY ◦ fY .

Thus f is unique. On the other hand we can see that ιX ◦ fX + ιY ◦ fY fullfils
the requirements:

πX ◦ (ιX ◦ fX + ιY ◦ fY ) = πX ◦ ιX︸ ︷︷ ︸
=idX

◦fX + πX ◦ ιY︸ ︷︷ ︸
=0

◦fY = fX .

and similarly

πY ◦ (ιX ◦ fX + ιY ◦ fY ) = fY .

Remark 9.5. • In particular in an additive category any two objects have
isomorphic product and coproduct. This shows that neither Set nor Top
can be additive categories.
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• It is possible to show that the addition of morphism is completely deter-
mined by the biproducts, and not an additional part of the structure.

That is, an additive category is a category with a zero-object, such that
any two objects have a product and a coproduct which are isomorphic,
satisfying certain properties.

Remark 9.6. For n > 1, and objects X1, . . . , Xn, we can iteratedly construct

X = (· · · (X1 ⊕X2)⊕X3) · · · )⊕Xn.

We note that for this object we have, similarly to the biproduct diagram and
with maps given by compositions of the maps there

πi : X Xi, and ιi : Xi X

such that

πi ◦ ιi = idXi
∀i, and

n∑
i=1

ιi ◦ πi = idX .

Remark 9.7 (Matrix notation). We often use the following intuitive matrix
notation for morphisms from X = X1 ⊕ · · · ⊕Xn to Y = Y1 ⊕ · · · ⊕ Ym:

A morphism f : X Y is represented by the matrix

(πYi
◦ f ◦ ιXj

)i=1,...,m
j=1,...,n

.

Conversely, given a matrix

(fij)i=1,...,m
j=1,...,n

with fij : Xj Yi

we can interpret it as the map

m∑
i=1

n∑
j=1

ιYi
◦ fij ◦ πXj

: X Y.

One easily sees that these constructions are mutually inverse to each other, and
thus we may identify matrices and maps between biproducts.

The main advantage of this notation is, that composition of maps is just
given by matrix multiplication:
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Given
o⊕

k=1

Xk

(fjk) n⊕
j=1

Yj
(gij) m⊕

i=1

Zi

we have

(gij)i,j ◦ (fjk)j,k = (

m∑
i=1

n∑
j=1

ιZi
◦ gij ◦ πYj

) ◦ (

n∑
j=1

o∑
k=1

ιYj
◦ fjk ◦ πXk

)

= (

m∑
i=1

n∑
j=1

o∑
k=1

ιZi
◦ gij ◦ fjk ◦ πXk

)

= (

n∑
j=1

gij ◦ fjk)i,k.

10 Kernels and cokernels

Definition 10.1. Let f : X Y be a morphism in an additive category. The
kernel of f is (if it exists) the pullback of

0

X Y
f

In other words, the kernel is given by an object Ker f , together with a morphism

κ : Ker f X (the other morphism Ker f 0 necessarily being 0), such that

f ◦ κ = 0, and that for any object H and morphism h : H X such that

f ◦ h = 0 there is a unique morphism ĥ : H Ker f such that h = κ ◦ ĥ.

Dually, the cokernel of f is, if it exists, the pushout of

X Y

0

f

and consists of an object Cok f and a map π : Y Cok f .
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Observation 10.2. In the definition of kernel above the map κ is a monomor-

phism: Let h, g : H Ker f such that κ ◦ h = κ ◦ g. Then clearly f ◦ κ ◦ h = 0,
and therefore κ ◦ h factors uniquely through κ, i.e. h = g.

Dually the map π in the definition of cokernel is an epimorphism.

Lemma 10.3. Let f : X Y be a morphism in an additive category. Then

f is a monomorphism if and only if 0 X is a kernel of f . Dually f is an

epimorphism if and only if Y 0 is a cokernel of f .

Proof. Assume first that f is a monomorphism. Then any morphism h : H X
such that f ◦ h = 0 is necessarily 0, and therefore factors (uniquely) through

0 X.

Conversely, assume 0 X is a kernel of f . Then any map h such that
f ◦ h = 0 factors through 0, that is is zero.

11 Abelian categories

Definition 11.1. A pre-abelian category is an additive category A , in which
every morphism has a kernel and a cokernel.

Definition 11.2. Let A be pre-abelian, and f : X Y a morphism. Let

Ker f
ι
X and Y

π
Cok f be kernel and cokernel of f . Then

• the image of f , denoted by Im f , is the kernel of π;

• the coimage of f , denoted by Coim f , is the cokernel of ι.

Proposition 11.3. In the setup of Definition 11.2, there is a unique map f
making the diagram

Ker f X Y Cok f

Coim f Im f

ι f π

ρ κ
f

commutative.
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Proof. Uniqueness of f follows immediately, since morphisms ρ and κ are epi
and mono, respectively.

Since f ◦ ι = 0 there is a morphism f ′ : Coim f Y such that f ′ ◦ ρ = f .
Moreover, since ρ is epi, 0 = π ◦f = π ◦f ′ ◦ρ implies π ◦f ′ = 0, hence f ′ factors
through κ. This proves the existence of f .

Definition 11.4. An abelian category is a pre-abelian category, in which, for

any morphism f : X Y the induced morphism f : Coim f Im f is an iso-
morphism.

Remark 11.5. In other words, an abelian category is an additive category
with kernels and cokernels, in which the first isomorphism theorem holds. (Re-
call that the first isomorphism theorem is precisely that X modulo kernel is
isomorphic with the image.)

Observation 11.6. In an abelian category

• every monomorphism is a kernel of its cokernel;

• every epimorphism is a cokernel of its kernel;

• every morphism that is both a monomorphism and an epimorphism is an
isomorphism.

Remark 11.7. One can show that the first two points above give an equivalent
definition of abelian category.

12 Exact sequences, pullbacks and pushouts

Observation 12.1. Let A
f
B

g
C be morphisms in an abelian category,

such that g ◦ f = 0. Then we have the following commutative diagram

Im f B Cok f

Ker g B Im g

where the right part consists of the cokernels of the left horizontal maps, and
the left part consists of the kernels of the right horizontal maps.
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It follows that the morphism Im f Ker g is an isomorphism if and only

if the morphism Cok f Im g is. (We may note that the former always is a
monomorphism, and the latter always is an epimorphism.)

Definition 12.2. Let A
f
B

g
C be morphisms in an abelian category, such

that g ◦ f = 0. We say that this sequence of morphisms is exact if the natural

morphism Im f Ker g is an isomorphism.

We say that a longer sequence of morphisms is exact if it is exact in every
(inner) position.

Example 12.3. • The sequence 0 A
f
B is exact if and only if Ker f =

0, that is if and only if f is a monomorphism.

• Dually the sequence A
g
B 0 is exact if and only if Cok g = 0.

• The sequence 0 A
f
B

g
C is exact if and only if

– f is a monomorphism (as before), and

– Ker g = Im f = A, that is A
f
B is a kernel of g.

• Dually the sequence A
f
B

g
C 0 is exact if and only if B

g
C is a

cokernel of f .

• The sequence 0 A
f
B

g
C 0 is exact if both f is a kernel of g and

g is a cokernel of f . Such an exact sequence is called short exact sequence.

Proposition 12.4. Let A be an abelian category. Consider the morphisms in
the following commutative square.

A B

C D

f

g h

i
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• The square is a pullback if and only if the sequence

0 A

(−f
g

)
B ⊕ C

(h i)
D

is exact.

• The square is a pushout if and only if the sequence

A

(−f
g

)
B ⊕ C

(h i)
D 0

is exact.

Proof. We first observe that the commutativity of the square means that (h i)◦(−f
g

)
= −h ◦ f + i ◦ g = 0.

Now observe that the square is a pullback if and only if

∀Ã ∈ ObA ∀f̃ : Ã B ∀g̃ : Ã C :

if h ◦ f̃ = i ◦ g̃ then ∃!ϕ : Ã A : f̃ = f ◦ ϕ and g̃ = g ◦ ϕ

assembling maps in matrices we obtain that this is equivalent to

∀Ã ∈ ObA ∀
(
−f̃
g̃

)
: Ã B ⊕ C :

if (h i) ◦
(
−f̃
g̃

)
= 0 then ∃!ϕ : Ã A :

(
−f̃
g̃

)
=
(−f
g

)
◦ ϕ

Now note that this last statement is precisely the definition of a kernel.
The proof of the second point is dual.

Remark 12.5. Proposition 12.4 shows, in particular, that in abelian categories
pullbacks and pushouts always exist.

Corollary 12.6. Let A be an additive category. If the square

A B

C D

f

g h

i
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• is a pullback, and i is an epi, then it is also a pushout;

• is a pushout, and f is a mono, then it is also a pullback.

Proposition 12.7. Let A be an abelian category.

• If the square

A B

C D

f

g h

i

is a pullback, then the kernel morphism Ker f Ker i is an isomorphism.

• If the square is a pushout then the cokernel morphism Cok f Cok i is
an isomorphism.

Proof. We only prove the first part, the second one is dual.

Denote the inclusions of the kernels by ι : Ker f A and κ : Ker i C,

respectively, and the kernel morphism by ϕ : Ker f Ker i. Consider the mor-

phism 0: Ker i B, as indicated in the following diagram.

Ker f A B

Ker i C D

ι f

ϕ
g h

κ
i

0κ̂̂̂κ

Clearly i ◦ κ = 0 = h ◦ 0, so by the pullback property there is a morphism

κ̂ : Ker i A such that κ = g ◦ κ̂ and 0 = f ◦ κ̂. By the second equality κ̂

factors through the kernel of f , that is there is a morphism ̂̂κ : Ker i Ker f

such that κ̂ = ι ◦ ̂̂κ.
Now it only remains to verify that ̂̂κ is an inverse of ϕ. Firstly we have

κ ◦ ϕ ◦ ̂̂κ = g ◦ ι ◦ κ̂ = g ◦ κ̂ = κ,

and hence, since κ is a monomorphism,

ϕ ◦ ̂̂κ = idKer i .
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Secondly we have(−f
g

)
◦ ι ◦ ̂̂κ ◦ ϕ =

(−f
g

)
◦ κ̂ ◦ ϕ = ( 0

κ ) ◦ ϕ =
(

0
κ◦ϕ
)

=
(−f◦ι
g◦ι

)
=
(−f
g

)
◦ ι,

and hence, since both ι and
(−f
g

)
are monomorphisms,̂̂κ ◦ ϕ = idKer f .

Corollary 12.8. In an abelian category

• the pullback of a mono is a mono;

• the pullback of an epi is an epi;

• the pushout of a mono is a mono;

• the pushout of an epi is an epi.

Moreover, in the case of the second and third point, the square in question is
actually both a pullback and a pushout.

Proof. The first point follows immediately from Proposition 12.7 above.
For the second point, note first that the pullback now also is a pushout, by

Corollary 12.6. Now apply (the dual-part of) Proposition 12.7.
The third and fourth points are dual to the second and first, respectively.

Proposition 12.9. In an abelian category, let A
f
B

g
C be morphisms such

that g ◦ f = 0. Then the following are equivalent.

• The sequence A
f
B

g
C is exact.

• For any morphism x : X B, such that g ◦ x = 0, there are an object X̂,

and morphisms x̂ and f̂ as in the following diagram

X̂ X

A B C

f̂

f

g

x̂ x

such that the square commutes, and f̂ is an epimorphism.
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• For any morphism y : B Y , such that y ◦ f = 0, there are an object Y̌ ,

and morphisms y̌ and f̌ as in the following diagram

A B C

Y Y̌

f g

ǧ

y y̌

such that the square commutes, and ǧ is a monomorphism.

Proof. We only prove the equivalence of the first two points. The equivalence
of the first and last point is dual to this.

Assume first that A
f
B

g
C is exact, that is Im f B is a kernel of

g. Thus any morphism x such that g ◦ x = 0 factors through Im f B, as
indicated in the following diagram.

X

A
∏
Im f

X Im f

A B C

f̂ ′

f g

x̂′

x′

f ′

We form the pullback as indicated above. By Corollary 12.8 the morphism f̂ ′

is epi.
Now assume conversely that the second point holds. In particular we can

find a commutative diagram

K̂er g Ker g

A B C

f̂

f

g

ι̂ ι
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where ι : Ker g B is a kernel of g, and f̂ is an epimorphism.

Then Ker g is the image of ι ◦ f̂ = f ◦ ι̂, and the inclusion of Ker g into B
factors through the inclusion of Im f . It follows that the inclusion of Im f into
Ker g, which exists since g ◦ f = 0, is an isomorphism, i.e. that the sequence is
exact.

Remark 12.10. In the category ModR of modules over a ring we can determine
exactness using elements: A sequence of morphisms

A
f

B
g

C

with g ◦ f = 0 is exact if for every element x ∈ B such that g(x) = 0 there is a
preimage, that is x̂ ∈ A such that f(x̂) = x.

Proposition 12.9 now tells us that the same holds for arbitrary abelian cate-

gories, if we replace “element” by “morphism X
x

”, and “preimage” by “com-
mutative square with epimorphism”.

We will see this kind of substitution in practice in the next section.

13 Some diagram lemmas

Theorem 13.1 (Five lemma). Let A be an abelian category. Consider the
following commutative diagram with exact rows.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

a1 a2 a3 a4

b1 b2 b3 b4

f1 f2 f3 f4 f5

• Assume f2 and f4 are monomorphisms, and f1 is an epimorphism. Then
f3 is a monomorphism.

• Assume f2 and f4 are epimorphisms, and f5 is a monomorphism. Then
f3 is an epimorphism.

In particular, if all of f1, f2, f4, and f5 are isomorphisms, then so is f3.
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Proof for the case ModR.
First point: Let x ∈ A3, such that f3(x) = 0. Then f4(a3(x)) = b3(f3(x)) = 0,
and, since f4 is a monomorphism, a3(x) = 0.

Thus there is a preimage x̂ of x in A2. We see that b2(f2(x̂)) = f3(a2(x̂)) =

f3(x) = 0, and thus there is a preimage f̂2(x̂) of f2(x̂) in B1.

Since f1 is assumed to be an epimorphism we can find a preimage f̃2(x̂) of

f̂2(x̂) in A1.

Now note that

f2(a1(f̃2(x̂))) = b1(f1(f̃2(x̂))) = f2(x̂),

and, since f2 is a monomorphism this implies a1(f̃2(x̂)) = x̂.

Thus x = a2(x̂) = a2(a1(f̃2(x̂))) = 0.

Second point: Let x ∈ B3. Since f4 is epi there is x′ ∈ A4 such that f4(x′) =
b3(x).

We note that f5(a4(x′)) = b4(f4(x′)) = b4(b3(x)) = 0. Thus, since f5 is
mono, we have a4(x′) = 0. It follows that there is x̂ ∈ A3 such that a3(x̂) = x′.

Next observe that

b3(x− f3(x̂)) = b3(x)− b3(f3(x̂)) = b3(x)− f4(a3(x̂)︸ ︷︷ ︸
=x′

) = 0.

Hence there is y ∈ B2 such that b2(y) = x − f3(x̂). Moreover, since f2 is epi,
there is ŷ ∈ A2 such that f2(ŷ) = y.

Now we have that

f3(x̂+ a2(ŷ)) = f3(x̂) + b2(f2(ŷ)︸ ︷︷ ︸
=y

) = f3(x̂) + x− f3(x̂) = x,

showing that an arbitrary x lies in the image of f3.

Proof for arbitrary abelian categories. We only prove the first point, the second
one is dual.

Let x : X A3 be a kernel of f3. Since

f4 ◦ a3 ◦ x = b3 ◦ f3 ◦ x = 0,
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and f4 is mono by assumption, we have a3 ◦ x = 0. Thus, by Proposition 12.9,
we obtain X̂, x̂, and an epimorphism â2 as indicated in the following diagram.

̂̂
X X̂ X

A1 A2 A3

B1 B2 B3

b̂1 ◦ f1 â2

a1 a2

b1 b2

f̂2 ◦ x̂ x̂ x

f1 f2 f3

Now note that b2 ◦ (f2 ◦ x̂) = 0, and that, since f1 is epi,

A1

b1 ◦ f1
B2

b2
B3

is exact. Hence we can find
̂̂
X, f̂2 ◦ x̂, and an epimorphism b̂1 ◦ f1 as indicated

above, such that b1 ◦ f1 ◦ f̂2 ◦ x̂ = f2 ◦ x̂ ◦ b̂1 ◦ f1. Since b1 ◦ f1 = f2 ◦ a1, and f2
is a monomorphism by assumption, this implies

a1 ◦ f̂2 ◦ x̂ = x̂ ◦ b̂1 ◦ f1,

and thus
x ◦ â2 ◦ b̂1 ◦ f1 = a2 ◦ a1︸ ︷︷ ︸

=0

◦f̂2 ◦ x̂ = 0.

Since â2 ◦ b̂1 ◦ f1 is an epimorphism this means that x = 0.
Thus we have seen that f3 ◦ x = 0 impies x = 0, which means that f3 is a

monomorphism.

Theorem 13.2 (Characterization of pullback and pushout). In an abelian cate-
gory, consider a commutative square, together with its kernel and cokernel mor-
phisms as in the following diagram.

Ker f A B Cok f

Ker i C D Cok i

ι f π

κ i ρ
k g h c
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Then

• the square is a pullback if and only if k is an isomorphism and c is a
monomorphism;

• the square is a pushout if and only if k is an epimorphism and c is an
isomorphism.

Proof. We only prove the first claim, the second one is dual.

Assume first that the square is a pullback. We have already seen – in Propo-

sition 12.7 – that the kernel morphism k is an isomorphism. Let x : X Cok f
be a morphism such that c ◦ x = 0.

̂̂
X X̂ X̂

A B Cok f

C D Cok i

î π̂

f π

i ρ

ϕ
x̂ x

g h c

ĥ ◦ x̂

Since B
π

Cok f 0 is exact, by Proposition 12.9, there are X̂, x̂, and an
epimorphism π̂ as indicated in the diagram.

Since C
i
D

ρ
Cok i is exact, and ρ◦(h◦x̂) = c◦x◦π̂ = 0, Proposition 12.9

also implies the existence of
̂̂
X, ĥ ◦ x̂, and an epimorphism î as above.

We get ϕ as indicated above by the pullback property of the original square.

Thus x ◦ π̂ ◦ î = π ◦ f ◦ϕ = 0 implies x = 0, and thus c is a monomorphism.

Now assume conversely that k is an isomorphism, and c a monomorphism.
We have to show that the square is a pullback.

We consider the pullback of i and h, and, by the pullback property, we get
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a map ϕ to it from A as indicated in the following diagram.

Ker f A B Cok f

Ker î
B
∏
D

C B Cok î

Ker i C D Cok i

ι f π

z î x

κ i ρ

k′′
ϕ idB c′′

k′ ĥ h c′

k

∼=
g

c

By the other implication of this theorem, we know that k′ is an isomorphism.
It follows that also k′′ is an isomorphism. Moreover, since c is mono, so is c′′.

It now follows from the five lemma (Theorem 13.1) that ϕ is an isomorphism.

Theorem 13.3 (Snake lemma). In an abelian category, consider (solid part of)
the following diagram with exact rows and columns

Ker f1 Ker f2 Ker f3

A1 A2 A3 0

0 B1 B2 B3

Cok f1 Cok f2 Cok f3

ι1 ι2 ι3

f1 f2 f3

π1 π2 π3

a1 a2

b1 b2

∂

Then there is a map ∂ : Ker f3 Cok f1, such that the dashed sequence

Ker f1 Ker f2 Ker f3
∂

Cok f1 Cok f2 Cok f3

is exact.
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Proof. Construction of ∂: Consider the pullback A2

∏
A3

Ker f3, and the pushout

B2

∐
B1

Cok f1. By Theorem 13.2 we have induced exact sequences

A1

â1
A2

∏
A3

Ker f3
â2

Ker f3 0

and

0 Cok f1
b̃1

B2

∐
B1

Cok f1
b̃2

B3,

as indicated in the following diagram.

Ker f1 Ker f2 Ker f3

A1 A2 A3

B1 B2 B3

Cok f1 Cok f2 Cok f3

ι1

ι2
ι3

f1 f2 f3

π1
π2

π3

a1 a2

b1 b2

k1 k2

∂

c1 c2

A2

∏
A3

Ker f3

â1

â2

ι̂3

B2

∐
B1

Cok f1
b̃1

b̃2
π̃1

We consider the composition

π̃1 ◦ f2 ◦ ι̂3

in the middle of the diagram.
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Note that both

(π̃1 ◦ f2 ◦ ι̂3) ◦ â1 = b̃1 ◦ π1 ◦ f1 = 0

and
b̃2 ◦ (π̃1 ◦ f2 ◦ ι̂3) = f3 ◦ ι3 ◦ â2 = 0.

Thus π̃1 ◦ f2 ◦ ι̂3 factors through both â2 and b̃1, that is we can (uniquely) find
∂ such that

b̃1 ◦ ∂ ◦ â2 = π̃1 ◦ f2 ◦ ι̂3.

Exactness in Ker f2: We first note that k2◦k1 = 0 by functoriality of kernels.
Now we aim to apply Proposition 12.9 to show exactness.

Let x : X Ker f2 such that k2 ◦ x = 0. Then clearly also a2 ◦ ι2 ◦ x = 0.

Hence, since the sequence A1 A2 A3 is exact, by Proposition 12.9, there

is an object X̂ and morphisms â1 and ι̂2 ◦ x such that â1 is epi, and ι̂2 ◦ x◦a1 =
â1 ◦ ι2 ◦ x, as indicated in the following diagram.

X̂ X

Ker f1 Ker f2 Ker f3

A1 A2 A3

0 B1 B2

ι1 ι2 ι3

f1 f2

a1 a2

b1

k1 k2

x

â1

ι̂2 ◦ x

ϕ

We note that b1 ◦ f1 ◦ ι̂2 ◦ x = f2 ◦ ι2 ◦ x ◦ â1 = 0. Since b1 is mono this implies
that f1 ◦ ι̂2 ◦ x = 0, so ι̂2 ◦ x = ι1 ◦ ϕ for some ϕ as indicated by the dashed
arrow above. Since

ι2 ◦ k1 ◦ ϕ = a1 ◦ ι1 ◦ ϕ = ai ◦ ι̂2 ◦ x = ι2 ◦ x ◦ â1,

and since ι2 is a monomorphism, it follows that also the upper square of the
diagram commutes. Now exactness in Ker f2 follows from Proposition 12.9.
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Exactness in Ker f3: We begin by noting that ∂ ◦ k2 = 0: This follows form
b̃1 ◦ ∂ ◦ k2 = π̃1 ◦ f2 ◦ ι2 = 0, since b̃1 is a monomorphism.

Now we proceed showing exactness by using Proposition 12.9. Thus, let

y : Ker f3 Y such that y ◦ k2 = 0. We construct the following diagram form
top to bottom:

Ker f2 Ker f3 Y

A1 A2 A3 Ỹ

B1 B2 ˜̃
Y

Cok f1 ˜̃̃
Y

k2 y

a1 a2 ỹ

b1 ˜̃y
˜̃̃
y

ι2 ι3 ι̃3

f1 f2 f̃2

π1 π̃1

Here we used Proposition 12.9 thrice:

• Ỹ , ỹ, and a monomorphism ι̃3 exist since ι3 is a mono;

• ˜̃Y , ˜̃y, and a monomorphism f̃2 exist because Ker f2
ι2
A2

f2
B2 is exact,

and (ỹ ◦ a2) ◦ ι2 = ι̃3 ◦ y ◦ k2 = 0;

•
˜̃̃
Y ,
˜̃̃
y, and a monomorphism π̃1 exist because A1

f1
B1

π1

Cok f1 is exact,

and (˜̃y ◦ a1) ◦ f1 = f̃2 ◦ ỹ ◦ a2 ◦ a1 = 0.

We now claim that

(π̃1 ◦ f̃2 ◦ ι̃3) ◦ y =
˜̃̃
y ◦ ∂.

To check this, consider the epimorphism â2 : A2

∏
A3

Ker f3 Ker f3 as above.

Note that we have
∂ ◦ â2 = π1 ◦ h,

where h is the unique map A2

∏
A3

Ker f3 B1 such that b1 ◦ h = f2 ◦ ι̂3.
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Now we can calculate˜̃̃
y ◦ ∂ ◦ â2 =

˜̃̃
y ◦ π1 ◦ h

= π̃1 ◦ ˜̃y ◦ b1 ◦ h
= π̃1 ◦ ˜̃y ◦ f2 ◦ ι̂3
= π̃1 ◦ f̃2 ◦ ỹ ◦ a2 ◦ ι̂3
= π̃1 ◦ f̃2 ◦ ỹ ◦ ι3 ◦ â2
= π̃1 ◦ f̃2 ◦ ι̃3 ◦ y ◦ â2.

And the claim follows since â2 is an epimorphism.
Now exactness of the snake sequence in Ker f3 follows from Proposition 12.9.

Exactness in Cok f1 and Cok f2: Are dual to the two positions we have
already treated.

Remark 13.4 (Construction of ∂ for ModR). For an element x of Ker f3, let
x̂ be a preimage of ι3(x) in A2. Then b2(f2(x̂)) = f3(a2(x̂)) = f3(ι3(x)) = 0.

Therefore f2(x̂) has a preimage f̂2(x̂) in B1. We define ∂(x) = π1(f̂2(x̂)).
One may check that this is well-defined.



Chapter III

Hom and
⊗

14 Hom, projectives and injectives

Let A be a preadditive category, and A ∈ ObA . Then HomA (A,−) and
HomA (−, A) define (additive) functors form A to Ab (covariant and contravari-
ant, respectively).

Now let A be abelian. We want to investigate what the Hom-functors do
to short exact sequences.

Example 14.1. In Ab, consider the short exact sequence

0 Z
·2

Z Z/(2) 0.

Applying HomAb(Z/(2),−) we obtain

0 0 0 Z/(2) 0.

Applying HomAb(−,Z/2) we obtain

0 Z/(2)
id

Z/(2)
0

Z/(2) 0.

In both cases we observe that the resulting sequence is not exact any more.
However, in both cases we may note that the left map is still the kernel of

the right map. We will now see that this is a general feature of Hom-functors.

45
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Theorem 14.2 (Hom is left exact). Let A be an abelian category, and let
A ∈ ObA .

• Let 0 X Y Z be exact. Then also

0 HomA (A,X) HomA (A, Y ) HomA (A,Z)

is exact, that is HomA (A,−) preserves kernels.

• Let X Y Z 0 be exact. Then also

0 HomA (Z,A) HomA (Y,A) HomA (X,A)

is exact, that is HomA (−, A) turns cokernels into kernels.

Such functors are called left exact.

Proof. We only prove the first claim, the second one is the same for the category
A op.

We denote by f : X Y and g : Y Z the maps of the original sequence.
We first check that f∗ = HomA (A, f) is injective. Let ϕ ∈ HomA (A,X) such
that f∗(ϕ) = 0. By definition f∗(ϕ) = f ◦ ϕ, and since f is a monomorphism
this can only be zero if ϕ already is zero.

Next let ϕ ∈ Ker g∗, that is g ◦ ϕ = 0. Then, since (X, f) is the kernel of g,

there is a map ψ : A X such that ϕ = f ◦ ψ, i.e. ϕ = f∗(ψ) ∈ Im f∗.

Definition 14.3. A functor between two abelian categories is called exact if it
preserves short exact sequences. It is called right exact if it preserves cokernels.

Observation 14.4. For a functor F between two abelian categories the following
are equivalent:

• F is exact;

• F is left exact and maps epimorphisms to epimorphisms;

• F is right exact and maps monomorphisms to monomorphisms.

Definition 14.5. Let A be an abelian category.

• An object P is called projective if the functor HomA (P,−) is exact.

• An object I is called injective if the functor HomA (−, I) is exact.
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Clearly injective objects in A are just projective objects in A op.

Example 14.6. In the category ModR, the object R is projective: Indeed

the functor HomR(R,−) : ModR Ab is just the forgetful functor, and hence
clearly is exact.

Observation 14.7. Direct sums and direct summands of projective objects are
projective (and similar for injective). The zero object is projective and injective.

Observation 14.8. Let A be an abelian category.

• An object P is projective if and only if any given diagram as the solid
part of the following, with exact row

P

X Y 0

can be completed to a commutative diagram by a morphism as indicated
by the dashed arrow.

(This is just a diagrammatic restatement of the fact that the functor
HomA (P,−) maps epimorphisms to epimorphisms.

• An object I is injective if and only if any given diagram as the solid part
of the following, with exact row

0 X Y

I

can be completed to a commutative diagram by a morphism as indicated
by the dashed arrow.

Recall that the free R-module on a set I is

R(I) = {f : I R | f(i) 6= 0 for only finitely many i ∈ I}.
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Theorem 14.9. Let R be a ring, P an R-module. Then the following are
equivalent:

• P is projective in ModR;

• There is a module Q such that P ⊕Q ∼= R(I) for some set I.

Proof. =⇒: Consider the natural map π : R(P ) P (the counit of the adjunc-
tion). It clearly is an epimorphism, and, since P is projective, it splits. Therefore
P ⊕Kerπ ∼= R(P ).
⇐=: Since HomModR(R(I),−) = HomSet(I,−), this functor maps epimor-

phisms to epimorphisms. Hence R(I) is projective. It follows that also all direct
summands of R(I) are projective.

Remark 14.10. It follows that for any R-module M , there is an epimorphism

P M from a projective module. (Take for instance P = R(M).)
It is also possible to show (but a lot more technical) that for every R-module

M there is a monomorphism M I into an injective R-module.

15 Tensor products

Definition 15.1. Ler R be a ring, M a right R-module and N a left R-module.

A map ϕ : M ×N A to an abelian group A is called R-balanced if

∀m ∈M,n1, n2 ∈ N : ϕ(m,n1 + n2) = ϕ(m,n1) + ϕ(m,n2),

∀m1,m2 ∈M,n ∈ N : ϕ(m1 +m2, n) = ϕ(m1, n) + ϕ(m2, n),

∀m ∈M,n ∈ N, r ∈ R : ϕ(mr, n) = ϕ(m, rn)

A tensor product is an abelian group M ⊗RN , together with an R-balanced

map t : M ×N M ⊗RN , such that for any R-balanced ϕ : M ×N A there

is a unique morphism of abelian groups h : M ⊗R N A such that ϕ = h ◦ t.
In this situation we write m⊗n = t(m,n), and call it an elementary tensor .

Note that there is no reason for t to be surjective in general, that is not all
elements of the tensor product need to be elementary tensors.

Theorem 15.2. Tensor products exist and are unique up to isomorphism.

Proof. Uniqueness can be shown similarly to the proof of uniqueness of limits
and colimits (see Proposition 7.3).
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To prove existence we explicitly construct a tensor product. We start by
considering the free abelian group F = Z(M×N). We have seen in Example 6.3
that

HomAb(F,A) = HomSet(M ×N,A).

Now the idea of the proof is that we alter F in such a way that in the right hand
side only the R-balanced maps remain. We denote by U the abelian subgroup
of F generated by all expressions of the form

χ(m,n1+n2) − χ(m,n1) − χ(m,n2),

χ(m1+m2,n) − χ(m1,n) − χ(m2,n), and

χ(mr,n) − χ(m,rn).

Then it is immediately verified that F/U is a tensor product.

Observation 15.3. The above construction shows that, while not all elements
of the tensor product are elementary tensors themselves, they are finite sums of
elementary tensors.

Example 15.4. Note that both individual elementary tensors and entire tensor
products can be zero, even if they don’t “look like it”:

Consider Z/(2) ⊗Z Z/(3). Take an elementary tensor (a + (2)) ⊗ (b + (3)).
Then

(a+ (2))⊗ (b+ (3)) = (a+ (2))⊗ 2(2b+ (3))

= (a+ (2))2⊗ (2b+ (3))

= 0⊗ (2b+ (3))

= 0⊗ 0(2b+ (3))

= 0⊗ 0

Thus all elementary tensors vanish, and hence the entire tensor product is zero.

Construction 15.5. Let f : M1 M2 be a morphism of right R-modules, and
N be a left R-module. Then the composition along the top and right of the
following diagram is R-balanced.

M1 ×N M2 ×N

M1 ⊗R N M2 ⊗R N

f × idN



50 CHAPTER III. Hom AND
⊗

Thus there is a unique map as indicated by the dashed arrow above, making
the diagram commutative. We denote this map by f ⊗R N . One immediately
verifies that

−⊗R N : ModR Ab

defines a functor.
Similarly, for a right R-module M one obtains a functor

M ⊗R − : ModRop Ab.

Example 15.6. Let R be any ring, and M ∈ ModR. Then

M ⊗R R ∼= M.

Indeed the map M×R M : (m, r) mr is clearly R-balanced, thus induces a

homomorphism M⊗RR M . An inverse is given by M M⊗RR : m m⊗
1.

16 Hom-tensor adjunction

Let M be an R-S-bimodule. Then for any R-module L, the tensor product
L ⊗R M becomes an S-module via (l ⊗ m)s = l ⊗ ms. In fact we obtain a
functor

−⊗RM : ModR ModS.

Similarly we have the functor

HomS(M,−) : ModS ModR,

where, for an S-module N , the R-module structure on HomS(M,N) is given by
ϕ · r = ϕ(r · −).

The following result shows that these two functors are in fact adjoint.

Theorem 16.1. Let L be an R-module, M be an R-S-bimodule, and N be an
S-module. Then

HomS(L⊗RM,N) ∼= HomR(L,HomS(M,N)),

and this isomorphism is natural in all arguments.
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Proof. We have mutually inverse maps given by

HomS(L⊗RM,N) ∼= HomR(L,HomS(M,N))

ϕ [` ϕ(`⊗m)]

[`⊗m ψ(`)(m)] ψ

Corollary 16.2. Let M be an R-S-bimodule. Then the functor

−⊗RM : ModR ModS

is right exact.

Proof. Since the functor is right adjoint to HomS(M,−) it commutes with all
colimits. But cokernels are certain colimits.

Remark 16.3. The above argument also shows that tensor products commute
with (infinite) coproducts.

Definition 16.4. A left R-module M is called flat if the tensor functor −⊗R
M : ModR Ab is exact.

Observation 16.5. • The R-module R is flat, since, by Example 15.6 ten-
soring with R is essentially identity.

• Any free R-module is flat, since, by Remark 16.3 tensoring commutes
with coproducts (which are special colimits), and since the coproduct of
a collection of exact sequences is exact again.

• Any projective R-module is flat, since it is a direct summand of a free
R-module by Theorem 14.9.

Remark 16.6. The converse of the last point above does not hold. For instance
Q is a flat Z module which is not projective.

However, for certain nice rings (for instance finite dimensional algebras over
a field), all flat modules are projective.
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Chapter IV

Complexes and homology

17 The long exact sequence of homology

Definition 17.1. Let A be an abelian category. A (cochain) complex in A is
a sequence of objects and morphisms

A• = · · ·
d−2

A−1
d−1

A0 d0
A1 d1

· · ·

such that di ◦ di−1 = 0 for all i ∈ Z.
We denote by C(A ) the category of all complexes in A , where morphisms

are given by

HomC(A )(A
•, B•) = {(f i)i∈Z |f i ∈ HomA (Ai, Bi) such that

f i ◦ di−1A = di−1B ◦ f i−1 ∀i ∈ Z},

that is morphisms are commutative diagrams

· · · A−1 A0 A1 · · ·

· · · B−1 B0 B1 · · ·

d−2A d−1A d0A d1A

d−2B d−1B d0B d1B

f−1 f0 f1

Note that the category C(A ) is also abelian, with kernels and cokernels
being calculated position by position.

53
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Remark 17.2. One defines chain complexes in a very similar way, just using
lower indices and counting down. This distinction comes from the origins of
homological algebra in algebraic topology, where the index often is the dimension
of the objects involved. Thus it is natural that the boundary of an n-dimensional
object is n−1-dimensional (chain complex) and not the other way around (thus
called cochain complex).

However in our course a complex is just an abstract sequence of objects and
maps, and thus the difference between counting up and counting down is of no
concern to us.

Definition 17.3. For a complex A•, and n ∈ Z, we set

Bn(A•) = Im dn−1 and Zn(A•) = Ker dn,

called the n-boundaries and n-cycles, respectively.

Note that since, by definition, dn ◦ dn−1 = 0, the inclusion Bn(A•) An

factors through the inclusion Zn(A•) An. We denote by Hn(A•) the cokernel

of this map Bn(A•) Zn(A•), and call it n-th homology of A•.
Note that all three of these constructions are functorial.

Remark 17.4. In case that our abelian category A is in fact a category of
modules (or any other category where it makes sense to talk about ‘elements’
of the objects) the above just means that Bn(A•) and Zn(A•) are submodules
of An, such that Bn(A•) ⊆ Zn(A•). Now homology is the quotient

Hn(A•) = Zn(A•)/Bn(A•).

There are obvious duals to the definition of boundaries, cycles, and homol-
ogy. (These are not what is called coboundaries, cocycles, and cohomology –
coboundaries are just the same as boundaries, but distinguishing between count-
ing up and counting down, see Remark 17.2.) However the next lemma tells us
that for homology it does not matter if we take this definition or its dual.

Lemma 17.5. Let A• be a complex in an abelian category. Then the epimor-

phism An Bn+1(A•) factors through the epimorphism An Cok dn−1, and

Hn(A•) = Ker[Cok dn−1 Bn+1(A•)].

Proof. The factorization follows form dn ◦ dn−1 = 0.
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Now consider the following diagram, where K denotes the kernel of the
lemma.

K

Bn(A•) An Cok dn−1

Zn(A•) An Bn+1(A•)

Hn(A•)

By the snake lemma we have a snake morphism as indicated by the dashed
arrow, and it is an isomorphism since both its kernel and cokernel are zero.

Theorem 17.6 (Long exact sequence of homology). Let A• B• C• be a
short exact sequence in C(A ), for some abelian category A . Then there is a
long exact sequence

· · · Hn(A•) Hn(B•) Hn(C•) Hn+1(A•) Hn+1(B•) · · · .

Proof. Note that Zn is left exact, and Cok dn is right exact. Thus we get exact
sequences in the rows of the following commutative diagram.

Cok dn−1A Cok dn−1B Cok dn−1C 0

0 Zn+1(A•) Zn+1(B•) Zn+1(C•)

where the vertical maps are induced by the maps dnA, dnB , and dnC , respectively.

In particular they are the composition Cok dn−1A Bn+1(A•) Zn+1(A•), and
similar for B• and C•. Thus their cokernels are Hn+1(A•), Hn+1(B•), and
Hn+1(C•), respectively. Moreover, by Lemma 17.5, the kernels are Hn(A•),
Hn(B•), and Hn(C•), respectively. Now the claim follows from the snake lemma.
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18 Cones and quasi-isomorphisms

In the setup of Theorem 17.6, one easily sees that the maps Hn(A•) Hn(B•)

and Hn(B•) Hn(C•) are just homologies of the original maps in C(A ). How-

ever the maps Hn(C•) Hn+1(A•) are induced by the snake morphism of the
snake lemma, and their description is less explicite. We make it explicite here

in the special case that all the short exact sequences An Bn Cn are split.

Observation 18.1. Let A• B• C• be a short exact sequence in C(A ),
such that

∀n : Bn = An ⊕ Cn
and the maps are given by ( 1

0 ) and (0 1), respectively.
Then dnB is given by a 2× 2-matrix, say

(
an fn

bn cn

)
.

In order for the first map to be a morphism of complexes we need

dnB ◦ ( 1
0 ) = ( 1

0 ) ◦ dnA,

that is an = dnA and bn = 0. Similarly, in order for the second map to be a
morphism of complexes we need bn = 0 and cn = dnC .

Finally we require dnB ◦ d
n−1
B = 0, with the above that gives

0 =
(
dnA fn

0 dnC

)
◦
(
dn−1
A fn−1

0 dn−1
C

)
=
(

0 fn◦dn−1
C +dnA◦f

n−1

0 0

)
that is fn ◦ (−dn−1C ) = dnA ◦ fn−1.

Conversely we see that any family (fn)n∈Z with this property gives rise to
a short exact sequence as above.

Definition 18.2 (Shift). Let A• be a complex. We denote by A•[n] the complex
obtained from A• by shifting every term n places to the left, that is with

(A•[n])i = Ai+n, and diA•[n] = (−1)ndn+iA• .

Clearly [n] defines an autoequivalence of C(A ), with inverse [−n].
Also note that Hi(A•[n]) = Hi+n(A•).

Definition 18.3 (Cone). Let f• : A• B• be a morphism in C(A ). Then the
cone Cone(f•) is the complex

· · ·

(
d−2
B f−1

0 −d−1
A

)
B−1 ⊕A0

(
d−1
B f0

0 −d0A

)
B0 ⊕A1

(
d0B f1

0 −d1A

)
· · · .
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By Observation 18.1 above we note that there is a degree-wise split short
exact sequence

B•
( 1
0 )

Cone(f•)
(0 1)

A•[1].

Moreover any degree-wise split short exact sequence is of this form.

Theorem 18.4. Let f• : A• B• be a morphism in C(A ). The long exact
sequence of homology associated to the short exact sequence

B•
( 1
0 )

Cone(f•)
(0 1)

A•[1]

is

· · · Hn(A•)
Hn(f•)

Hn(B•)
Hn ( 1

0 )
Hn(Cone(f•))

Hn(0 1)
Hn+1(A•) · · ·

Proof. The fact that the second and third map are just the homologies of the
maps of complexes we started with follows immediately from the construction
of the long exact sequence. We need to check that the first map is indeed the
n-th homology of the map f•.

We follow the construction. To do so, we consider the following diagram
with exact rows, but not columns, where the middle part is just the diagram
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from the proof of Theorem 17.6.

0 Bn Cone(f•)n An+1 0

Cok dn−1B
Cok dn−1Cone(f•) Cok dnA 0

0 Zn+1(B•) Zn+1(Cone(f•)) Zn+2(A•)

0 Bn+1 Cone(f•)n+1 An+2 0

Bn ⊕An+1

Bn+1 ⊕An+2

Hn+1(A•)

Hn+1(B•)

Zn+1(A•)( 0
1 )

Cok dnB
(1 0)

Note that the composition along the columns are just the differentials dnB ,(
dnB fn+1

0 −dn+1
A

)
, and −dn+1

A , respectively.

Now recall the construction of the snake map from the snake lemma: Us-
ing the splitting indicated by the dashed arrows above, we first consider the
composition

Zn+1(A•) An+1
( 0
1 )

Bn ⊕An+1

(
dnB fn+1

0 −dn+1
A

)
Bn+1 ⊕An+2

(1 0)
Bn+1 Cok dnB .

Multiplying the matrices we see that this is the composition

Zn+1(A•) An+1
fn+1

Bn+1 Cok dnB .

Thus the induced map on homology is

Hn+1(f•) : Hn+1(A•) Hn+1(B•).
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Definition 18.5. A morphism f• : A• B• in C(A ) is called quasi-isomor-
phism if Hn(f•) is an isomorphism for all n.

Corollary 18.6. Let f• : A• B• be a morphism in C(A ). Then f• is a
quasi-isomorphism if and only if the complex Cone(f•) is exact.

19 Homotopy

Definition 19.1. A morphism f• : A• B• in C(A ) is called null-homotopic
if there are morphisms

hn ∈ HomA (An, Bn−1) n ∈ Z

such that
∀n ∈ Z : fn = dn−1B ◦ hn + hn+1 ◦ dnA.

Two morphisms f• and g• in HomC(A )(A
•, B•) are called homotopic if f•−

g• is null-homotopic.

Lemma 19.2. Let A•
e•

B•
f•

C•
g•

D• be morphisms in C(A ). If f• is
null-homotopic, then so is the composition g• ◦ f• ◦ e•.

Proof. By definition we have maps hi such that fn = dn−1C ◦ hn + hn+1 ◦ dnB .

We choose h̃n = gn−1 ◦ hn ◦ en. Then

dn−1D ◦ h̃n + h̃n+1 ◦ dnA = dn−1D ◦ gn−1︸ ︷︷ ︸
=gn◦dn−1

C

◦hn ◦ en + gn ◦ hn+1 ◦ en+1 ◦ dnA︸ ︷︷ ︸
=dnB◦en

= gn ◦ (dn−1C ◦ hn + hn+1 ◦ dnB) ◦ en

= gn ◦ fn ◦ hn

Definition 19.3. Let A be an abelian category. The homotopy category K(A )
is given by

ObK(A ) = ObC(A ) and

HomK(A )(A
•, B•) =

HomC(A )(A
•, B•)

homotopy
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that is morphisms are considered the same if their difference is null-homotopic.

Lemma 19.2 shows that this indeed is a category, by making sure that mul-
tiplication of morphisms is well-defined.

It follows from the definition that K(A ) inherits the structure of an additive
category from C(A ) - the Hom-sets are by definition quotient abelian groups.
However K(A ) will typically not be abelian.

Proposition 19.4. Let f• : A• B• be null-homotopic. Then Hn(f•) = 0 for
all n ∈ Z.

In particular the Hn define functors K(A ) A .

Proof. By assumption there are hn such that fn = dn−1B ◦ hn + hn+1 ◦ dnA.

First let ιA : Zn(A•) An, and similar for ιB . Then Zn(f•) is defined by

ιB ◦ Zn(f•) = fn ◦ ιA

Inserting the above formula for fn we obtain that this is equal to

dn−1B ◦ hn ◦ ιA + hn+1 ◦ dnA ◦ ιA︸ ︷︷ ︸
=0

= dn−1B ◦ hn ◦ ιA.

Now note that this map clearly factors through Bn(B•) Bn, and thus the
induced map on homology vanishes.

20 Projective and injective resolutions

Definition 20.1. An abelian category A has enough projectives if for any

A ∈ ObA there is an epimorphism P A from a projective object P to A.

Dually A has enough injectives if for any A ∈ ObA there is a monomor-

phism A I from A to some injective object I.

Example 20.2. Let R be a ring. The category ModR has enough projectives
and enough injectives.

Proposition 20.3. Let (X,6) be a finite partially ordered set, and A an abelian
category.

If A has enough projectives, then so does preshA X. Dually, if A has
enough injectives, then so does preshA X.
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Proof. We show that preshA X has enough projectives, the claim about injec-
tives is dual. For a A ∈ ObA and i ∈ X we define a presheaf PAi by

PAi (j) =

{
A ifj 6 i

0 otherwise.
.

One easily sees that

HompreshA X(PAi ,M) = HomA (A,M(i)).

Therefore PAi is projective provided A is projective in A .
Now let M be an arbitrary A -valued presheaf on X. For i ∈ X, let

Ai M(i) be an epimorphism from a projective object in A . We set P =⊕
i∈X P

Ai
i . Then P is projective, and there is an epimorphism P M in

preshA X.

Construction 20.4. Let A be an abelian category with enough projectives,
and let A ∈ A . A projective resolution is a complex

· · · P−2
d−2

P−1
d−1

P 0 0 0 · · ·

with projective terms, which is exact, except in postion 0, where Cok d−1 = A.
Dually, if A has enough injectives then an injective resolution of A is a

complex

· · · 0 0 I0
d0

I1
d1

I2 · · ·
with injective terms, which is exact, except in position 0, where Ker d0 = A.

Observation 20.5. Let A be an abelian category with enough projectives.
Then any object A ∈ A has a projective resolution. This can be constructed

iteratedly: Start with an epimorphism P 0 A, and call A−1 its kernel. Given

Ai, take an epimorphism P i Ai, and call Ai−1 its kernel. Concatenating
these short exact sequences we obtain a projective resolution.

Dually, if A has enough injectives, then any object has an injective resolu-
tion.

Construction 20.6. Let A and B be objects in an abelian category having
enough projectives. Let P •A and P •B be projective resolutions of A and B, respec-

tively. Given a morphism A
f
B, we construct (non-canonically) a morphism

P •f : P •A P •B such that H0(P •f ) = f :
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In the diagram below we construct the vertical morphisms from right to left,
starting with the given morphism f , such that everything commutes.

· · · P−2A P−1A P 0
A

A−2 A−1 A

· · · P−2B P−1B P 0
B

B−2 B−1 B

f

Here we obtain the morphisms P−nA P−nB using that P−nA is projective, and

thus the composition P−nA A−n B−n may be factored through the epi-

morphism P−nB B−n. The morphisms A−n B−n are kernel morphisms.

Theorem 20.7. Let A have enough projectives. Then taking projective reso-
lutions defines a functor

p : A K(A ),

such that H0 ◦ p = idA and Hn ◦ p = 0 for n 6= 0.
Dually, if A has enough injectives we can define an injective resolution

functor

i : A K(A ),

such that H0 ◦ i = idA and Hn ◦ i = 0 for n 6= 0.

Proof. We have to show that there is a unique map P •f : P •A P •B as in the

construction above, for any f : A B. Taking differences it is enough to show
this for f = 0.

So consider the solid part of the following commutative diagram

· · · P−2A P−1A P 0
A

A

· · · P−2B P−1B P 0
B

B−2 B−1 B

0

f0
f−1f−2 h0h−1
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Since the composition of f0 with the epimorphism P 0
B B vanishes we see that

f0 factors as indicated by the rightmost dotted map above. Moreover, since P 0
A

is projective, we can lift this dotted map along the epimorphism P−1B B−1

to obtain a map h0 as above such that d−1PB
◦ h0 = f0.

Now observe that d−1PB
◦ (f−1 − h0 ◦ d−1PA

) = d−1PB
◦ f−1 − f0 ◦ d−1PA

= 0. Thus

f−1−h0◦d−1PA
factors through the kernel B−2 P−1B as indicated by the second

dotted arrow. Since P−1A is projective we may lift this along the epimorphism

P−2B B−2, and obtain a morphism h−1 such that d−2PB
◦h−1 = f−1−h0 ◦d−1PA

,
or, in other words,

f−1 = h0 ◦ d−1PA
+ d−2PB

◦ h−1.
We iterate this construction to obtain a homotopy, thus showing that the map
of complexes we started with is in fact null-homotopic.

Proposition 20.8 (Horseshoe lemma). Let A B C be a short exact se-
quence in an abelian category. Assume P •A and P •C are projective resolutions of A
and C, respectively. Then there is a projective resolution P •B with P iB = P iA⊕P iC ,
such that the following diagram commutes:

· · · P−2A P−1A P 0
A A

· · · P−2A ⊕ P−2C P−1A ⊕ P−1C P 0
A ⊕ P 0

C B

· · · P−2C P−1C P 0
C C

( 1
0 )

(0 1)

( 1
0 )

(0 1)

( 1
0 )

(0 1)

Remark 20.9. In other words, the horseshoe lemma says that P •B may be
chosen as the cone of a certain map from P •C [−1] to P •A.

Proof. It suffices to consider the first step, and then iterate. Let us denote the

given maps by A
a
B

b
C, and πA : P 0

A A and πC : P 0
C C. Since P 0

C is

projective there is a map π̃C : P 0
C B such that b ◦ π̃C = πC . It follows that

(b ◦πA π̃C) is a map P 0
A⊕P 0

C B making the right part of the diagram above
commutative. It follows from the five lemma (Theorem 13.1) that this also is
an epimorphism.
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Finally note that, by the snake lemma, the kernels also form a short exact
sequence, so we may iterate the argument.



Chapter V

Derived functors

21 Definition and first properties

Let A and B be abelian categories, and F : A B an (additive) functor. Then

F also induces a functor FK : K(A ) K(B). We use this construction to define
derived functors.

Definition 21.1. Let F : A B be a right exact functor. Assume that A has
enough projectives. Then we define the n-th left derived functor of F by

LnF = H−n ◦ FK ◦ p.

That is, we take a projective resolution of the object, apply our functor to this
projective resolution, and then consider the homology groups of the result.

Dually, if F : A B is left exact and A has enough injectives, we can
construct right derived functors as

RnF = Hn ◦ FK ◦ i.

Lemma 21.2. Let A have enough projectives, and let F : A B be right
exact. Then L0F is naturally isomorphic to F.

Dually, if A has enough injectives and the functor is left exact, then R0F ∼=
nat

F.

Proof. We follow the definition of L0F:

65
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Let A ∈ ObA , and let · · · P−1
d
P 0 be a projective resolution of A.

Then A = Cok d. We apply F, and see that

L0FA = H0(· · · FP−1
Fd

FP0) = Cok Fd.

But since F is right exact we have

Cok Fd ∼= F(Cok d) = FA.

Lemma 21.3. Let A have enough projectives, and let F : A B be exact.
Then LnF = 0 for all non-zero n.

Dually, if A has enough injectives and the functor is exact, then RnF = 0
except for n = 0.

Proof. Since the functor is exact it commutes with taking homology. That is

LnF = H−n ◦ FK ◦ p = F ◦ H−n ◦ p =

{
F ◦ idA if n = 0

F ◦ 0 if n 6= 0

Example 21.4. For the functors Hom and ⊗ the derived functors have special
names:

ExtnA (A,−) = Rn HomA (A,−)

ExtnA (−, A) = Rn HomA (−, A)

TorRn (M,−) = Ln(M ⊗R −)

TorRn (−, N) = Ln(−⊗R N)

In the second line, note that we consider HomA (−, A) as a left exact func-

tor A op Ab. In particular we calculate the derived functors by taking an
injective resolution in A op, that is a projective resolution in A .

We will see later that ExtnA (A,−)(B) = ExtnA (−, B)(A), and will simply
denote this by ExtnA (A,B). (And similar for Tor.)

Example 21.5. We calculate TorZi (Z/(n),−)(Z/(m)):
We start with a projective resolution of Z/(m). The simplest one is given

by 0 Z
·m

Z 0.
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Now we apply the (non-derived) functor Z/(n)⊗Z−, and obtain the complex

0 Z/(n)
·m

Z/(n) 0. The kernel of the non-zero map here is

(n/gcd(m,n))/(n) ∼= Z/(gcd(m,n)),

and the cokernel is also Z/(gcd(m,n)). Thus

TorZi (Z/(n),−)(Z/(m)) =

{
Z/(gcd(m,n)) if i ∈ {0, 1}
0 otherwise.

Theorem 21.6. Let A have enough projectives, and let F : A B be right
exact.

For any short exact sequence A B C in A there is a long exact se-
quence

· · · L2FC L1FA L1FB L1FC FA FB FC 0

in B.

Proof. By the horseshoe lemma (Proposition 20.8) we may find projective res-
olutions of A, B, and C fitting into a diagram as follows:

· · · P−2A P−1A P 0
A A

· · · P−2A ⊕ P−2C P−1A ⊕ P−1C P 0
A ⊕ P 0

C B

· · · P−2C P−1C P 0
C C

( 1
0 )

(0 1)

( 1
0 )

(0 1)

( 1
0 )

(0 1)
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Now, applying F to these projective resolutions, we obtain the diagram

· · · FP−2A FP−1A FP 0
A

· · · FP−2A ⊕ FP−2C FP−1A ⊕ FP−1C FP 0
A ⊕ FP 0

C

· · · FP−2C FP−1C FP 0
C

( 1
0 )

(0 1)

( 1
0 )

(0 1)

( 1
0 )

(0 1)

Note that while F is not exact, it does preserve direct sums and split short exact
sequences.

Now the long exact sequence of the theorem is just the long exact sequence
of homology (Theorem 17.6).

22 Syzygies and dimension shift

Observation 22.1. Let F : A B be right exact, and A have enough pro-
jectives.

Then LiFP = 0 for all non-zero i and any projective P . (To see this, note

that 0 P 0 is a projective resolution.)

The aim of this section is to combine this observation with the long exact
sequence of derived functors.

Definition 22.2. Let A be abelian with enough projectives. For an object A,
we construct a syzygy of A as the kernel of an epimorphism from a projective
object to A, and denote it by ΩA. That is, by definition we have a short exact
sequence

0 ΩA P A 0

with P projective.

Remark 22.3. Note that ΩA is not uniquely determined by A: different epi-
morphisms from projectives may give different syzygies.

In particular Ω is not a functor. (It may be applied to morphisms, but this
again involves making choices.)
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It can be seen that Ω defines an auto-functor of the quotient category

A
morphisms factoring through

projective objects

.

Definition 22.4. Dually, if A has enough injectives, we define the cosyzygy of
an object A to be the cokernel of a monomorphism of A into an injective object.
The cosyzygy will be denoted by fA.

Remark 22.5. It is more usual to denote cosyzygies by Ω−1. However is should
be noted that syzygy and cosyzygy are in general not mutually inverse to each
other, which this notation seems to suggest.

Theorem 22.6 (Dimension shift). Let F : A B be right exact, and assume
that A has enough projectives. Let A ∈ ObA . Then

LnFA = Ln−1F(ΩA) ∀n > 2.

Moreover, given a short exact sequence ΩA P A with P projective, we
have

L1FA = Ker[F(ΩA) FP ].

Proof. We consider the short exact sequence ΩA P A, and the long exact
sequence of derived functors associated to it. For n > 2 we obtain

0 = LnFP LnFA Ln−1F(ΩA) Ln−1FP = 0,

and thus the first claim.
For n = 1 we have the exact sequence

0 = L1FP L1FA F(ΩA) FP,

and thus the second claim.

We also have the dual for left exact functors:

Theorem 22.7. Let F : A B be left exact, and assume that A has enough
injectives. Let A ∈ ObA . Then

RnFA = Rn−1F(fA) ∀n > 2.

Moreover, given a short exact sequence A I fA with I injective, we have

R1FA = Cok[FI F(fA)].
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23 Ext1 and extensions

Let A be an abelian category, and A and B objects. We denote by E the
collection of all short exact sequences

E : 0 B E A 0

for some E.
We consider two short exact sequences E1 and E2 equivalent if there is a

commutative diagram

0 B E1 A 0

0 B E2 A 0

ϕ

Note that by the five lemma the map ϕ necessarily is an isomorphism. Using
this fact one may see that the above definition indeed gives rise to an equivalence
relation.

Definition 23.1. The Yoneda-Extension group is the collection of equivalence
classes

YExt1A (A,B) = E / ∼ .

To explain why this is a group, we first discuss that it is functorial in both
A and B:

Construction 23.2. Let f : B1 B2. Then taking pushouts gives a map

YExt1A (A,B1) YExt1A (A,B2), denoted by f · −:

E : 0 B1 E A 0

f · E : 0 B2 B2

∐
B1
E A 0

Here we use that pushouts of monos are mono, and have the same cokernel.
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Dually, if g : A1 A2, taking pullbacks gives a map

− · g : YExt1A (A2, B) YExt1A (A1, B).

It is possible to see that these constructions commute: (f ·E) · g = f · (E · g).
Hence we may omit brackets in this setup.

Definition 23.3 (Baer sum). Let E1 and E2 be in YExt1A (A,B). We first
define their coproduct to be

E1 ⊕ E2 : 0 B ⊕B E1 ⊕E2 A⊕A 0 ∈ YExtA (A⊕A,B ⊕B),

where all maps are diagonal.
Now the Baer sum of E1 and E2 is

E1 + E2 = (1 1) ◦ (E1 ⊕ E2) ◦ ( 1
1 ) ∈ YExt1A (A,B).

Theorem 23.4. The Yoneda-Ext of two objects, together with Baer sum, forms
an abelian group (provided it is a set). The zero-element of this abelian group
is given by the split short exact sequence.

This group structure turns YExt1A into an additive functor A op×A Ab.

Proof. It is clear from the construction that the Baer sum is commutative.
For E1,E2,E3 ∈ YExt1A (A,B) one may see that

E1 + E2 + E3 = (1 1 1) ◦ (E1 ⊕ E2) ◦
(

1
1
1

)
independent of brackets, that is Baer sum is associative.

Next we observe that for any short exact sequence E we have that both 0 ·E
and E · 0 are split short exact. Indeed we have the following pushout diagram

E : 0 B1 E A 0

0 · E 0 B2 B2 ⊕A A 0

π

( 1
0 ) (0 1)

0 ( 0
π )

(and a similar one for the case of pullbacks along zero-morphisms).
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Now we check that for two maps f and g from B1 to B2, and an extension
E ∈ YExt1A (A,B1), we have (f + g) · E = f · E + g · E. As a first step, consider
the commutative diagram

E : 0 B1 E A 0

( 1
1 ) · E : 0 B1 ⊕B1 Ẽ A 0

E⊕ E : 0 B1 ⊕B1 E ⊕ E A⊕A 0

( 1
1 )

( 1
1 )

( 1
1 )

where the dashed arrow exists by the pushout property of the upper left square.
We see that

( 1
1 ) · E = (E⊕ E) · ( 1

1 ) .

Now we calculate

f · E + g · E = (1 1)(f · E⊕ g · E) ◦ ( 1
1 )

= (f g) · (E⊕ E) ( 1
1 )

= (f g) ( 1
1 ) · E

= (f + g) · E

Finally we use the above observations to verify that the split exact sequences
are a neutral element, and that there are inverses:

Let E ∈ YExtA (A,B), and let Esplit denote the split exact sequence between
the same two objects. Then

E + Esplit = 1 · E + 0 · E = (1 + 0) · E = E.

Similarly we check that (−1) · E is an inverse of E:

E + (−1) · E = (1− 1) · E = 0 · E

is the split exact sequence.

Theorem 23.5. Assume A has enough projectives. Then

YExt1A (A,B) = Ext1A (−, B)(A).
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Dually, if A has enough injectives then

YExt1A (A,B) = Ext1A (A,−)(B).

In particular if A has both enough projectives and enough injectives then

Ext1A (−, B)(A) = Ext1A (A,−)(B).

Proof. We prove the first claim. The second one is dual, and the third one then
follows immediately.

Consider a short exact sequence

Ep : 0 ΩA
ι
P

π
A 0

with P projective. We may consider this an element of YExt1A (A,ΩA).
Now multiplication with Ep gives a map

− · Ep : HomA (ΩA,B) YExt1A (A,B).

We claim that this map is surjective, and that its kernel consist precisely of the
morphisms factoring through ι.

To see surjectivity, consider the following diagram for any E ∈ YExt1A (A,B):

Ep : 0 ΩA P A 0

E : 0 B E A 0

f

Here the right dashed arrow exists by the lifting property of projectives, and
the left dashed arrow is a kernel morphism. It follows from the characterization
of pushouts (see Theorem 13.2) that the left square is a pushout, that is that
E = f · Ep for the morphism f found in the diagram.

To determine the kernel of the map − ·Ep, note that a morphism f is in the
kernel if and only if we can find a commutative diagram

Ep : 0 ΩA P A 0

E : 0 B B ⊕A A 0

ι π

( 1
0 ) (0 1)

f ( rs )
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By commutativity of the right square we need s = π, and then the left square
commutes if and only if r ◦ ι = f . It follows that the kernel consists precisely of
the maps factoring through ι.

But, by dimension-shift (see Theorem 22.7) we have

Ext1A (−, B)(A) = Cok[HomA (P,B) HomA (ΩA,B)],

that is Ext1A (−, B)(A) is also the quotient of HomA (ΩA,B) modulo morphisms
factoring through ι.

24 Total complexes - balancing Tor and Ext

Definition 24.1. A double complex is an infinite commutative square pattern

...
...

...

· · · Xm−1,n−1 Xm,n−1 Xm+1,n−1 · · ·

· · · Xm−1,n Xm,n Xm+1,n · · ·

· · · Xm−1,n+1 Xm,n+1 Xm+1,n+1 · · ·

...
...

...

dm−1,n−2
v dm,n−1

v dm+1,n−1
v

dm−1,n−1
v dm,n−1

v dm+1,n−1
v

dm−1,n
v

dm,n
v dm+1,n

v

dm−1,n+1
v dm,n+1

v dm+1,n+1
v

dm−2,n−1
h dm−1,n−1

h dm,n−1
h dm+1,n−1

h

dm−2,n
h dm−1,n

h dm,n
h dm+1,n

h

dm−2,n+1
h dm−1,n+1

h dm,n+1
h dm+1,n+1

h

such that the composition of any two vertical or any two horizontal morphisms
vanishes.

In other words, a double complex is just an object in the category C(C(A )).

Definition 24.2. Let X•,• be a double complex, and assume that for any s, the
infinite coproduct

∐
m∈ZX

m,s−m exists. (For instance this is true if on every
diagonal there are only finitely many non-zero objects.)
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Then the total complex of X•,• is given by

Tot(X•,•)s =
∐
m∈Z

Xm,s−m,

with the differential given on components by

Xm,s−m Xm′,s+1−m′ :


dm,s−mv if m′ = m

(−1)s−mdm,s−mh if m′ = m+ 1

0 otherwise.

Remark 24.3. Note that cones are a special case of total complexes, where the
only non-zero objects lie in rows −1 and 0.

Proposition 24.4. Let X•,• be a double complex concentrated in finitely many
rows. (That is there are a 6 b such that Xm,n = 0 whenever n < a or n > b.)
Assume that all rows of X•,• are exact. Then the total complex Tot(X•,•) is
exact.

Proof. Let

Y m,n =

{
Xm,n if n > a

0 if n 6 a

that is Y •,• is obtained from X•,• by removing the top non-zero row.
Then one may observe that there is a natural map

f• : X•,a[−a− 1] Tot(Y •,•)

and
Tot(X•,•) = Cone(f•).

Now we may assume inductively that Tot(Y •,•) is exact, and it then follows
from the long exact sequence of homology that also all homologies of Tot(X•,•)
vanish.

Corollary 24.5. Let X•,• be a double complex such that all diagonals are finite.
(That is for any s there are only finitely many m such that Xm,s−m 6= 0.)
Assume all rows of X•,• are exact. Then the total complex Tot(X•,•) is exact.

Proof. For any given position, we may disregard the rows of X•,• such that
Xs−n,n = 0. Hence exactness in position s follows from Proposition 24.4 above.
Since this applies to any given position the entire complex is exact.
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Theorem 24.6 (Balancing Ext). Let A be an abelian category with enough
projectives and enough injectives. Then for any A,B ∈ ObA

ExtnA (A,−)(B) = ExtnA (−, B)(A).

Proof. We choose a projective resolution P • of A, and an injective resolution
I• of B.

Recall that the two Ext-groups of the theorem are by definition the homolo-
gies of HomA (A, I•) and HomA (P •, B), respectively. We will connect these
two complexes via the third complex Tot(HomA (P •, I•)), showing that there
are two quasi-isomorphisms

HomA (P •, B) Tot(HomA (P •, I•)) HomA (A, I•).

It then follows immediately that all three complexes have the same homologies.

We denote the exact complex

· · · P−1 P 0 A 0 · · ·

by P
•
, and similarly the exact complex

· · · 0 B I0 I1 · · ·

by I
•
.

We consider the double complex HomA (P
•
, I
•
), and its versions with P •

instead of P
•

and I• instead of I
•
. (In the following picture we write (X,Y )
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for HomA (X,Y ) to save space.)

(A,B) (P 0, B) (P 1, B) (P 2, B)

(A, I0) (P 0, I0) (P 1, I0) (P 2, I0)

(A, I1) (P 0, I1) (P 1, I1) (P 2, I1)

(A, I2) (P 0, I2) (P 1, I2) (P 2, I2)

We note that

HomA (P •, I
•
) = exact columns

=⇒ exact total complex

and

HomA (P
•
, I•) = exact rows

=⇒ exact total complex

On the other hand there is the morphism HomA (P •, B) Tot(HomA (P •, I•))
(essentially given by the morphisms crossing the vertical dashed line above),

whose cone is Tot(HomA (P •, I
•
)). In particular the cone is exact, so the mor-

phism is a quasi-isomorphism.
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Similarly the natural morphism HomA (A, I•) Tot(HomA (P •, I•)) is a

quasi-isomorphism, since its cone Tot(HomA (P
•
, I•) is exact.

Now the two quasi-isomorphisms

HomA (P •, B) Tot(HomA (P •, I•)) HomA (A, I•)

give rise to isomorphisms

H−n(HomA (P •, B)) ∼= H−n(Tot(HomA (P •, I•))) ∼= H−n(HomA (A, I•)).

Now note that the left hand term is by definition ExtnA (−, B)(A), while the
right hand term is ExtnA (A,−)(B).

Theorem 24.7 (Balancing Tor). Let R be ring, M a right and N a left R-
module. Then

TorRn (M,−)(N) = TorRn (−, N)(M).

Proof. The proof is very similar to the proof of Theorem 24.6 above. Here we
start with two projective resolutions P •M and P •N of M and N respectively. We
then proceed as before to show that we have quasi-isomorphisms

M ⊗R P •N Tot(P •M ⊗R P •N ) P •M ⊗R N.

It then follows that the homologies of all three complexes coincide.

25 Small global dimension

Throughout this section, let A be an abelian category that has enough projec-
tives or enough injectives.

Definition 25.1. The global dimension of A is

gl.dim A = sup{n ∈ N0 | ∃A,B ∈ ObA : ExtnA (A,B) 6= 0} ∈ N0 ∪ {∞}.

An abelian category is called

• semisimple if gl.dim A = 0;

• hereditary if gl.dim A 6 1.

Proposition 25.2. The following are equivalent:
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(1) A is semisimple;

(2) all objects in A are projective;

(3) all objects in A are injective;

(4) all epimorphisms in A are split epimorphisms;

(5) all monomorphisms in A are split monomorphisms.

Proof. We show (1) =⇒ (5) =⇒ (3) =⇒ (1). The proof of (1) =⇒ (4) =⇒
(2) =⇒ (1) is similar.

Assume first that A is semisimple. Then YExt1A = 0, hence all short exact
sequences split. In particular any monomorphism splits.

If any monomorphism splits then the lifting property for injectives is auto-
matic, so all objects are injective.

Finally, if all objects are injective, then ExtnA (A,−)(B) = 0 for all n > 0.
(Note that B is its own injective resolution.)

Example 25.3. Let F be a field. Then both ModF and modF are semisimple
abelian categories.

Definition 25.4. Assume A has enough projectives. Then the projective di-
mension pdA of an object A is the smallest n, such that A has a projective
resolution of the form

· · · 0 P−n · · · P 0 0 · · · .

(We say pdA =∞ if all projective resolutions of A are infinite.)

Dually, if A has enough injectives, then the injective dimension idA of an
object A is the smallest n such that A has an injective resolution

· · · 0 I0 · · · In 0 · · · .

Remark 25.5. Clearly an object A is projective if and only if pdA = 0, and
injective if and only if idA = 0.

Theorem 25.6. Assume A has enough projectives, and let A ∈ ObA . Then

pdA = sup{n ∈ N0 | ∃B ∈ ObA : ExtnA (A,B) 6= 0}.
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Proof. If pdA = n then ExtiA (A,B) = 0 for any i > n, and thus we have the
inequality >.

Assume now that ExtiA (A,−) = 0 for some i. By dimension shift it follows
that Ext1A (Ωi−1A,−) = 0. Interpreting this as Yoneda-Ext, we see that any
epimorphism to Ωi−1A splits, that is that Ωi−1A is projective.

Now we have a projective resolution of length i− 1, given by

0 Ωi−1A P 2−i · · · P 0 0

showing that pdA 6 i− 1.

We also have the dual of the above theorem:

Theorem 25.7. Assume A has enough injectives, and let A ∈ ObA . Then

idA = sup{n ∈ N0 | ∃B ∈ ObA : ExtnA (B,A) 6= 0}.

Corollary 25.8. Assume A has enough projectives. Then

gl.dim A = sup{pdA | A ∈ ObA }.

Dually, if A has enough injectives, then

gl.dim A = sup{idA | A ∈ ObA }.

Proposition 25.9. Assume A has enough projectives. Then A is hereditary
if and only if all subobjects of projective objects are projective.

Remark 25.10. This explains the name “hereditary”: subobjects inherit the
property of being projective.

Proof. Assume first that any subobject of a projective is projective. Then it
follows that any object has a projective resolution with at most two non-zero
terms. Thus A is hereditary by Corollary 25.8.

Assume conversely that A is hereditary, and let A P be a subobject of a
projective. We denote by P/A the cokernel of this inclusion, and observe that

Ext1A (A,−) = Ext2A (P/A,−) = 0

where the first equality is dimension shift, and the latter comes from the defi-
nition of hereditary. It follows that A is projective.
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Theorem 25.11. Let R be right noetherian. Then the category modR of finitely
generated right R-modules is hereditary if and only if all right ideals of R are
projective.

Proof. “only if” is clear, since right ideals are submodules of the projective
module R.

“if”: It suffices to show that any submodule of Rn is projective (since all
projective objects are direct summands of free modules). We show this by
induction on n, the case n = 1 holding by assumption.

Let M be a submodule of Rn, and consider the split short exact sequence

0 R R⊕Rn−1︸ ︷︷ ︸
∼=Rn

Rn−1 0.

We denote by I and K the image and kernel of the composition M Rn−1.
Thus we have the following commutative diagram

K M I

R Rn Rn−1

where the dashed map is the kernel morphism, and it is mono by commutativity
of the left square.

Now inductively both K and I are projective, hence the upper short exact
sequence splits, and M ∼= K ⊕ I also is projective.

Remark 25.12. More generally, one can show that the category ModR is
hereditary if and only if all right ideals of R are projective.

Example 25.13. Let R be a principal ideal domain. (That is a commuta-
tive ring without zero-divisors, such that every ideal is generated by a single
element.) Then ModR is hereditary.

In particular ModZ is hereditary, and for any field F the category of modules
over the polynomial ring ModF[X] is hereditary.

Remark 25.14. One can show that for a field F, one has

gl.dimF[X1, . . . , Xd] = d.
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Chapter VI

Triangulated categories

26 Motivation – triangles in the homotopy cat-
egory

Throughout this section, let A be an abelian category. We have seen that for
a morphism of complexes f•

A•
f•

B• Cone(f•) A•[1]

is a complex in K(A ), giving rise to a long exact sequence of homology.
Now we take a different point of view, and say we consider the infinite

complex

· · · A•[n] B•[n] Cone(f•)[n]

A•[n+ 1] B•[n+ 1] Cone(f•)[n+ 1] · · ·

in the homotopy category. Since this complex is (up to shift) 3-periodic, we
denote it by the triangle of objects and morphisms

A• B•

Cone(f•)

|

83
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(where the decorated arrow indicates that this represents a morphism to A•[1]).
The next result shows that, while the triangle is defined starting with f•, it

has no preferred side.

Proposition 26.1. Let

A•
f•

B•
ι•

Cone(f•)
π•

A•[1]

be a triangle as above, that is ιn = ( 1
0 ) and πn = (0 1) for all n.

Then there is an isomorphism ϕ• : Cone(ι•) A•[1] in K(A ) such that the
following diagram commutes.

B• Cone(f•) Cone(ι•) B•[1]

B• Cone(f•) A•[1] B•[1]

ι• ( 1
0 ) (0 1)

ι• π• −f•[1]

ϕ•

Proof. We start by calculating that

Cone(ι•)n = Cone(f•)n ⊕Bn+1 = Bn ⊕An+1 ⊕Bn+1

and

dnCone(ι•) =
(
dCone(f•) ιn+1

0 −dn+1
B

)
=

(
dnB fn+1 1

0 −dn+1
A 0

0 0 −dn+1
B

)
.

We consider the morphisms ϕ• : Cone(ι•) A•[1] given by ϕn = (0 1 0) and

ψ• : A•[1] Cone(ι•) given by ψn =
( 0

1
−fn+1

)
. A straightforward calculation

shows that these are indeed morphisms of complexes.
Now we check the following three claims:

(1) The square

Cone(f•) Cone(ι•)

Cone(f•) A•[1]

( 1
0 )

π•

ϕ•

commutes in the category C(A ).
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(2) The square

Cone(ι•) B•[1]

A•[1] B•[1]

(0 1)

−f•[1]

ψ•

commutes in the category C(A ).

(3) ϕ• ◦ ψ• = 1 in the category C(A ).

(4) 1− ψ• ◦ ϕ• is null homotopic.

(1), (2), and (3) are straightforward matrix calculations, which are left to the
reader. We only check (4) here. First we calculate

1− ψn ◦ ϕn =
(

1
1
1

)
−
( 0

1
−fn+1

)
◦ (0 1 0) =

( 1 0 0
0 0 0
0 fn+1 1

)
.

Now we set hn =
(

0 0 0
0 0 0
1 0 0

)
: Cone(ι•)n Cone(ι•)n−1 and see that

dn−1Cone(ι•) ◦ h
n + hn+1 ◦ dnCone(ι•)

=

(
dnB fn+1 1

0 −dn+1
A 0

0 0 −dn+1
B

)
◦
(

0 0 0
0 0 0
1 0 0

)
+
(

0 0 0
0 0 0
1 0 0

)
◦

(
dnB fn+1 1

0 −dn+1
A 0

0 0 −dn+1
B

)

=
(

1 0 0
0 0 0
−dnB 0 0

)
+

(
0 0 0
0 0 0
dnB fn+1 1

)
=
( 1 0 0

0 0 0
0 fn+1 1

)
Now note that (3) and (4) together imply that ϕ• and ψ• are mutually

inverse isomorphisms in K(A ), and thus (2) implies that also the rightmost
square in the proposition commutes up to homotopy.

27 Definition

Definition 27.1. A triangulated category is an additive category T , together

with an autoequivalence [1] : T T , and a class ∆ of diagrams of the form

X
f
Y

g
Z

h
X[1] such that
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(T1) • For any morphism f : X Y in T , there is a diagram

X
f

Y Z X[1]

in ∆.

• For any object X, the diagram X
idX

X 0 X[1] is in ∆.

• ∆ is closed under isomorphism.

(T2) For any diagram X
f
Y

g
Z

h
X[1] in ∆ also the diagrams

Y
g

Z
h

X[1]
−f [1]

Y [1] and

Z[−1]
−h[−1]

X
f

Y
g

Z

are in ∆.

(T3) Given the solid part of a diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u v u[1]w

where the square commutes, and the rows are in ∆, one can always find
a morphism w as indicated above such that the entire diagram becomes
commutative.

(T4) Octahedral axiom: Given the solid part of the following diagram, where
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the two rows and the left column are in ∆,

X Y Z ′ X[1]

X Z Y ′ X[1]

X ′ X ′ Y [1]

Y [1] Z ′[1]

f g

h

g[1]

f [1]

h

there are morphisms as indicated by the dashed arrows, such that also the
second column is in ∆, and the entire diagram commutes.

Remark 27.2. Sometimes morphisms Z X[1] are denoted by arrows

Z X.|

Then the elements of ∆ can be depicted as actual triangles

X Y

Z

|
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In particular the octahedron in Axiom (T4) becomes visible in this notation:

X X ′

Y

Y ′

Z

Z ′

|

|

|
|

Here all the oriented triangles lie in ∆, and all the non-oriented triangles and
squares commute.

Remark 27.3. (T3), by use of (T2), can be seen as a kind of “2 out of 3”-
property: Given any two morphisms connecting two triangles, one may find a
third.

Theorem 27.4 (Long exact Hom-sequence). Let T be a triangulated category,

X Y Z X[1] in ∆, and T ∈ ObT . Then the sequences

· · · HomT (T,X[n]) HomT (T, Y [n]) HomT (T,Z[n])

HomT (T,X[n+ 1]) HomT (T, Y [n+ 1]) HomT (T,Z[n+ 1]) · · ·

and

· · · HomT (Z[n], T ) HomT (Y [n], T ) HomT (X[n], T )

HomT (Z[n− 1], T ) HomT (Y [n− 1], T ) HomT (X[n− 1], T ) · · ·

are exact.

Proof. We prove the first claim, the second one is dual. (Note that T op is also
triangulated.)
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By the rotation axiom (T2) it suffices to check that the sequence

HomT (T,X) HomT (T, Y ) HomT (T,Z)

is exact. We do so by comparing the given triangle to the trivial triangle

T T 0 T [1].

T T 0 T [1]

X Y Z X[1]

fg g[1]

By (T3) the existence of the dashed arrow g is equivalent to the existence of the
middle dashed arrow. That is, for f ∈ HomT (T, Y ) we have

[Y Z] ◦ f = 0 ⇐⇒ ∃g ∈ HomT (T,X) : [X Y ] ◦ g = f.

Remark 27.5. The above theorem says that any morphism in a triangle is a
weak kernel of the next morphism, and a weak cokernel of the previous mor-
phism.

Theorem 27.6 (2 out of 3 property for isomorphisms). Let T be a triangulated
category, and consider two triangles connected by morphisms as in the following
diagram.

X1 Y1 Z1 X1[1]

X2 Y2 Z2 X2[1]

f g h f [1]

If two of the morphisms f , g, and h are isomorphisms, then so is the third one.

Proof. By (T2) we may rotate the triangles and assume f and g are isomor-
phisms. Now we apply the functor HomT (−, Z1) to the entire diagram, obtain-
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ing

(X1, Z1) (Y1, Z1) (Z1, Z1) (X1[1], Z1) (Y1[1], Z1)

(X2, Z1) (Y2, Z1) (Z2, Z1) (X2[1], Z1) (Y2[1], Z1)

− ◦ f − ◦ g − ◦ h − ◦ f [1] − ◦ f [1]

where (?, Z1) is short for HomT (?, Z1).
Since f and g are isomorphisms it follows that also the left two and right

two vertical maps in this diagram are isomorphisms. Now, by the five lemma,
the morphism

− ◦ h : HomT (Z2, Z1) HomT (Z1, Z1)

is an isomorphism. In particular there is h̃ ∈ HomT (Z2, Z1) such that h̃ ◦ h =
idZ1

, that is h is split mono.
Similarly, using the functor HomT (Z2,−), one sees that h is split epi. Thus

h is an isomorphism.

28 Homotopy categories are triangulated

Theorem 28.1. Assume A is an additive category. Then the homotopy cat-
egory K(A ) is triangulated, with ∆ being the class of all diagrams isomorphic

to standard triangles A•
f•

B• Cone(f•) A•[1].

Proof. We have seen (the first half of) (T2) in Proposition 26.1.
The first and last point of (T1) hold by construction, for the second one note

that 0 X•
idX

X• 0 is a triangle, so, since we already checked (T2), so is

X•
idX

X• 0 X•[1].
For (T3) we may, up to isomorphism, assume the following setup:

X• Y • Cone(f•) X•[1]

X ′• Y ′• Cone(f ′•) X ′•[1]

f• ( 1
0 ) (0 1)

f ′• ( 1
0 ) (0 1)

u• v• ∃? u•[1]
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One easily sees that the map given by wn =
(
vn 0
0 un+1

)
fits into this diagram.

To check the octahedral axiom (T4), we again may assume that all triangles
are standard triangles, that is consider the commutative diagram

X• Y • Cone(f•) X•[1]

X• Z• Cone(g• ◦ f•) X•[1]

Cone(g•) Cone(
(
gn 0
0 1

)
n
)

Y •[1] Cone(f•)[1]

f• ( 1
0 ) (0 1)

g•
(
gn 0
0 1

)
n

g• ◦ f• ( 1
0 ) (0 1)

( 1
0 )

(
1 0
0 1
0 0
0 0

)(
1 0
0 0
0 1
0 0

)
?

(0 1) ( 0 0 1 0
0 0 0 1 )

( 1
0 )

The map marked ? in the diagram above is an isomorphism in K(A ), with
inverse given by (

1 0 0 0
0 fn+1 1 0

)
n

: Cone(
(
gn 0
0 1

)
n
) Cone(g•).

It only remains to check that the square

Cone(g• ◦ f•) X•[1]

Cone(
(
gn 0
0 1

)
n
) Cone(g•) Y •[1]

(0 1)(
1 0
0 1
0 0
0 0

)
f•[1](

1 0 0 0
0 fn+1 1 0

)
n

∼=
(0 1)

commutes up to homotopy. In fact one easily checks that it even commutes in
C(A ).

Observation 28.2. Any object A ∈ ObA may be considered as a complex

· · · 0 X 0 · · · , with X in degree 0. This construction gives a fully
faithful embedding of A into C(A ) and into K(A ). (Note that no non-zero
map between complexes of this form can be null-homotopic.)

By abuse of notation, we identify the object X with the complex as above.
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Lemma 28.3. Let X ∈ A , and A • ∈ C(A ). Then we may consider the
complex

HomA (X,A•).

We have

Zn HomA (X,A•) = HomC(A )(X,A
•[n]) and

Hn HomA (X,A•) = HomK(A )(X,A
•[n]).

Dually

Zn HomA (A•, X) = HomC(A )(A
•, X[n]) and

Hn HomA (A•, X) = HomK(A )(A
•, X[n]).

Proof. We see that

HomC (A )(X,A
•[n]) = {ϕ ∈ HomA (X,An) | dnA ◦ ϕ = 0}

= Ker[HomA (X,An) HomA (X,An+1)]

= Zn HomA (X,A•).

Moreover a morphism from X to A•[n] is null-homotopic if and only if if factors
through dn−1A , that is lies in

Bn HomA (X,A•) = Im[HomA (X,An−1) HomA (X,An)].

The claim on homology now follows by taking quotients.

Recall that, provided an abelian category A has enough projectives, we have

the functor p : A K(A ) taking an object to its projective resolution. Recall
also that, by the horseshoe lemma (Proposition 20.8), for a short exact sequence

0 A B C 0 in A

we have a triangle

pA pB pC pA[1] in K(A ).

Theorem 28.4. Assume A has enough projectives. Then

ExtnA (A,B) = HomK(A )(pA,B[n]).

Dually, if A has enough injectives, then

ExtnA (A,B) = HomK(A )(A, iB[n]).
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Proof. We have ExtnA (A,B) = Hn HomA (pA,B) by definition. Now the claim
follows from Lemma 28.3 above.

Remark 28.5. In view of this theorem, the long exact Hom-Ext-sequence can
be seen as a long exact sequence coming from a triangle in the homotopy cate-
gory.

We proceed by extending the above to arbitrary derived functors. To do so,
we need the following two observations:

Observation 28.6. Let A be an abelian category. Taking homology H0 takes
triangles in K(A ) to long exact sequences. (This is just a restatement of the
long exact sequence of homology – see Theorem 17.6.)

Observation 28.7. Let F : A B be any additive functor. Then FK preserves
triangles.

Construction 28.8. Let F : A B be right exact. Then the long exact se-

quence of derived functors (associated to a short exact sequence A B C
in A ) is the long exact sequence of homology coming from the triangle

FKpA FKpB FKpC FKpA[1] in K(B).

29 Derived categories

Derived categories address the following two (closely related) issues with homo-
topy categories:

• Short exact sequences are not triangles in the homotopy category. (How-
ever one may get triangles replacing the objects by projective or injective
resolutions.)

• Quasi-isomorphisms preserve all information on homology, but are not iso-
morphisms in the category K(A ). In particular, in the discussion above,
we had to take a projective or injective resolution, instead of the object
itself (which is quasi-isomorphic).

The answer to these issues it to (brute force) make quasi-isomorphisms in-
vertible.
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Construction 29.1. Let A be an abelian category. A roof from a complex
X• to Y • is a diagram of the form

X•

X̃•

Y •
qis q

f

with some middle object X̃•, and where q is a quasi-isomorphism. For compact
notation we write the above roof as f · q−1.

Two roofs f · q−1 and g · r−1 are called equivalent if there is a commutative
diagram

X•

X̃•

˜̃X•

H• Y •

qis q f

qis r g

qis

qis

Remark 29.2. In other words, if we denote the middle quasi-isomorphisms by
q′ and r′ respectively, we find a common denominator q ◦ q′ = r ◦ r′, and then
compare the enumerators f ◦ q′ and g ◦ r′.

We need to check that the above notion of equivalence defines an equivalence
relation. To that end (and in fact throughout the discussion of roofs) we need
the following observation.

Lemma 29.3 (Ore condition). Let A be an abelian category. Given the solid
part of the following square, where q is a quasi-isomorphism, it is possible to
find the dashed part (including Ỹ •), where r is a quasi isomorphism.

X̃• Y •

X• Ỹ •

f

qis q r qis

g
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Dually, given the dashed part, it is possible to find the solid part.

Proof. We complete q to a triangle as in the upper row of the following diagram

X̃• X• Cone(q) X̃•[1]

Y • Ỹ • Cone(q) Y •[1]

q

f g idCone(q) f [1]

r

Now by (T1) and (T3) we can complete the diagram as indicated by the dashed
arrows, such that the lower row is also a triangle. Since q is quasi-iso we know
that Cone(q) is exact. Now, since the cone of r is (isomorphic to) Cone(q), it
follows that also r is a quasi-isomorphism.

Lemma 29.4. The above defines an equivalence relation on the collection of
roofs from X• to Y •.

Proof. The definition of equivalence is clearly reflexive and symmetric.
Assume f · q−1 is equivalent to g · r−1, which in turn is equivalent to h · s−1,

as in the solid part of the following diagram.

X•

X̃•

H•

˜̃X•

˜̃̃
X•

H̃•

Y •

Ĥ•

qis q
f

r

qis

g

qis

qis

qis s h

qis

qis

qis

qis
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By the Ore condition (Lemma 29.3) is is possible to find Ĥ• and the two dashed
quasi-isomorphisms such that the square in the middle commutes. (One easily
sees that if three sides of a square are quasi-iso, then so is the forth.)

Now the claim follows by considering Ĥ• between the two outer roofs.

Construction 29.5. Let A be an abelian category. Assume that for any
complexes X• and Y •, the collection of roofs from X• to Y • up to equivalence
is a set. Then we define the derived category by

ObD(A ) = ObK(A ) and

HomD(A )(X
•, Y •) = {roofs from X• to Y •}/ ∼,

with composition given as follows:

Given f · q−1 : X• Y •, and g · r−1 : Y • Z• as in the solid part of the
following diagram,

X•

X̃•

˜̃X•

Y •

X̃•

Y •

qis q f qis r g

qis r̃ f̃

we may find ˜̃X• and the two dashed maps by the Ore condition (Lemma 29.3)
. We now define the product to be

(g · r−1) ◦ (f · q−1) = (gf̃) · (qr̃)−1.

One may check that this is well-defined up to equivalence of roofs, and only
depends on the equivalence class of the factors. Then it is easy to see that this
multiplication is associative.

Observation 29.6. • The derived category comes with a natural functor

K(A ) D(A ) which is sends every complex to itself, and a morphism

f to the trivial roof f · id−1.

• A complex X• becomes isomorphic to 0 in D(A ) if and only if it is exact.
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• A morphism f in K(A ) is mapped to the zero-morphism in D(A ) if there
is a quasi-isomorphism q such that f ◦ q = 0. One can prove that this is
equivalent to f factoring through an exact complex. (To see this, consider
the cone of q.)

• For a quasi-isomorphism q, also the shift q[n] is a quasi-isomorphism for
any n. It follows that [1] defines an autoequivalence of D(A ).

Theorem 29.7. Let A be an abelian category, such that D(A ) is defined. Then
D(A ) is a triangulated category, where ∆ consists of all triangles isomorphic
to standard triangles

X•
f

Y • Cone(f) X•[1],

where f is a morphism of complexes.

Proof. We check the axioms. Here we make heavy use of the fact that we already
checked the axioms for K(A ).

(T1) For the first bullet point (there is a triangle starting with any morphism)
we proceed as follows: Given the morphism f · q−1 we first find a standard
triangle starting with f , and then alter it by the isomorphism q.

The second bullet point (triangle with identity as first morphism) follows
from the same statement for K(A ).

The third one (∆ closed under isos) holds by definition.
(T2) Up to isomorphism, the triangle is a standard triangle. For such trian-

gles we know that the rotations are isomorphic to standard triangles in K(A ),
and therefore also in D(A ).

(T3) Up to isomorphism we may assume that the two triangles we want to
connect are standard triangles. That is we have the solid part of the following
diagram.

A• B• Cone(a) A•[1]

C• D• Cone(c) C•[1]

Ã

˜̃A B̃

Ã[1]

˜̃A[1]

a

a

qis q

f

qis r

g

qis q[1]

f [1]

qis q̃
ã

qis q̃[1]

Cone(ã)

s

h
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By the Ore condition (Lemma 29.3) we can find the two dashed maps as in the
diagram above, such that the upper pentagon commutes. We may even choose
them in such a way that also the lower pentagon commutes.

We complete ã to a triangle, and apply (T3) for the homotopy category to
find the morphisms s and h making the diagram commutative. Taking homology
and applying the five lemma (Theorem 13.1), we can see that r and q ◦ q̃ being
quasi-isomorphisms automatically also makes s a quasi-isomorphism. Thus the
morphism h · s−1 in D(A ) is the desired morphism between cones.

(T4) For the octahedral axiom, one may argue (similarly to the above) that
all the input data lies in the homotopy category, and thus (T4) follows from the
same axiom for K(A ).

Remark 29.8. It might seem like we gained little, since the triangles in the
derived category are “the same” as the triangles in the homotopy category.
However, since there are now more isomorphisms (all quasi-isos have become
isomorphisms), there are in fact “more” triangles.

Example 29.9. Let 0 A
f
B

g
C 0 be a short exact sequence in an

abelian category. Then there is a triangle

A
f

B
g

C A[1] in D(A ).

To see this, consider the standard triangle

A
f

B
( 1
0 )

Cone(f)
(0 1)

A[1].

We note that Cone(f) is the complex in the upper row of the following diagram,
and that the vertical map here is a quasi-isomorphism

· · · 0 A B 0 · · ·

· · · 0 0 C 0 · · ·

f

gq

Thus we also have the (isomorphic) triangle

A
f

B
q ◦ ( 1

0 )
C

(0 1) · q−1
A[1]
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in D(A ). Finally note that q ◦ ( 1
0 ) = g.

Theorem 29.10. Let A be abelian, and A,B ∈ ObA . Then

HomD(A )(A,B[n]) =


0 if n < 0,

HomA (A,B) if n = 0,

YExt1A (A,B) if n = 1.

Proof. We consider roofs

A

E•

B[n]

qis q
f

where q is a quasi-isomorphism.
We first consider the truncation of E• to the right as in the following dia-

gram.

τ60E• : · · · E−1 Ker d0E 0 · · ·

E• : · · · E−1 E0 E1 · · ·

One may observe that the natural map r : τ60E• E• indicated above induces
an isomorphism on all non-positive homologies. Since in our setup E• is quasi-
isomorphic to A it has non-zero homology only in degree 0. Therefore r is a
quasi-isomorphism.

It follows that the roof f · q−1 is equivalent to the roof fr · (qr)−1. In other
words, up to equivalence we may assume that E• is concentrated in non-positive
degrees.

This proves the first claim, since B[n] is concentrated in (the in that case
positive) degree −n.

Now assume n > 0. Then we may (similarly to the above) cut off the left
part of E• as indicated in the following diagram.

E• : · · · E−n−1 E−n E−n+1 · · ·

τ>−nE• : · · · 0 Cok d−n−1E E−n+1 · · ·
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As before we see that the map s : E• τ>−nE• is a quasi-isomorphism (since
n > 0).

Now observe that both q and f factor through s (since both A and B[n]
are concentrated in degrees > −n), say via q′ and f ′. Then we see that the
roof f · q−1 is equivalent to f ′ · (q′)−1. Thus now we may assume that E• is
concentrated in degrees −n, . . . , 0.

Now we consider the case n = 0. Then, by the above discussion, we may
assume that E• is concentrated in degree 0. Thus q is an isomorphism, and hence

f · q−1 lies in the image of the natural map HomA (A,B) HomD(A )(A,B).
Conversely this map is also injective, since no non-zero morphism from A to B
has vanishing homology.

Proposition 29.11. Let A be an abelian category, and P • a right bounded
complex of projectives. (That is all Pn are projective, and ∃N∀n > N : Pn = 0.)
Then

(1) Let E• be an exact complex. Then HomK(A )(P
•, E•) = 0.

(2) Any quasi-isomorphism P̃ • P • from any complex P̃ • to P • is a split
epimorphism in the category K(A ).

(3) Let X• be any complex. Then the map

HomK(A )(P
•, X•) HomD(A )(P

•, X•)

is an isomorphism.

Proof. (1) Let f• : P • E• be a morphism of complexes. We construct a null-
homotopy iteratedly from right to left. So let n be some index, and assume we

already have hi : P i Ei−1 for i > n, such that f i = di−1E ◦hi+hi+1diP . (Note
that this is automatic for n > N - thus we have a starting point for our iterated
construction.)



29. DERIVED CATEGORIES 101

The setup is depicted in the following diagram.

Pn Pn+1

En−1 En En+1

Im dn−1E

dnP

dn−1E

dnE

fn fn+1hn+1hn

We observe that dnE ◦ (fn − hn+1 ◦ dnP ) = 0, and hence fn − hn+1 ◦ dnP factors
through Im dn−1E = Ker dnE as indicated by the dashed arrow above. Since Pn is

projective we may lift along the epimorphism En−1 Im dn−1E , obtaining hn

as indicated by the dotted arrow.

(2) Let q : P̃ • P • be a quasi-isomorphism. Then, in the triangle

P̃ •
q

P • Cone(q) P̃ •[1]

in K(A ), the complex Cone(q) is exact (Corollary 18.6), so by (1) the middle
map vanishes.

It now follows that q is a split epimorphism.

(3) By (2) in any fraction f · q−1 : P • X• the quasi-isomorphism q is a
split epimorphism. Thus we may find q̃ such that q◦ q̃ = idP• . One easily checks

that f · q−1 = (f q̃) · id−1, so it lies in the image of the functor K(A ) D(A ).

On the other hand, we know that a morphism f in K(A ) vanishes in D(A ) if
and only if there is a quasi-isomorphism q such that f ◦q = 0 (Observation 29.6.
However, by (2) such a quasi-isomorphism is a split epimorphism, hence f =
0.

Corollary 29.12. Assume A has enough projectives or enough injectives.
Then

HomD(A )(A,B[n]) = ExtnA (A,B)

for any n and objects A and B of A .
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Proof. Assume A has enough projectives, and let pA be a projective resolution

of A. Then the natural projection q : pA A is a quasi-isomorphism, and so

HomD(A )(A,B[n]) = HomD(A )(pA,B[n])

= HomK(A )(pA,B[n]) (by Proposition 29.11)

= ExtnA (A,B) (by Theorem 28.4)

Remark 29.13. • By Example 29.9 a short exact sequence in A “is” a
triangle in D(A ). Thus, by Corollary 29.12 above, the long exact Hom-
Ext sequence can be interpreted as the long exact Hom-sequence coming
from this triangle.

• Corollary 29.12 and Theorem 29.10 also show that all definitions of Ext
coincide, when they are defined (Yoneda-Ext, deriving by first argument,
and deriving by second argument).

30 Derived functors

Let F : A B be an additive functor. We observed that applying this functor

position by position gives rise to a functor FK : K(A ) K(B). We would now
like to do the same thing for derived categories, that is we would like to have a
functor FD making the following square commutative

K(A ) K(B)

D(A ) D(B)

FK

FD

πA πB

where πA and πB are the canonical functors from the homotopy categories to
the corresponding derived categories.

Unfortunately, however, it is not possible to find such a functor FD in general:

Lemma 30.1. Let F : A B be an additive functor between abelian categories.

Then a functor FD : D(A ) D(B) making the diagram above commutative
exists if and only if F is exact.
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Proof. If the functor F is exact, then it preserves homology, and thus in particu-
lar FK preserves quasi-isomorphisms. It follows that we can define FD(f ·q−1) =
FK(f) · FK(q)−1. (Note that FK preserves equivalence of roofs, so this is in fact
well-defined.)

On the other hand, if F is not an exact functor, then there will be a short

exact sequence A1 A2 A3 in A such that the image

0 FA1 FA2 FA3 0

is not exact. Interpreting this sequence as an element of K(A ), we see that the
object is sent to 0 by πA , but not by πB ◦ FK. Clearly this makes it impossible
to obtain a commutative square as above.

Since it usually is not possible to find a functor FD as above, one is lead to
consider functors that make the square “as commutative as possible”.

Definition 30.2. Let F : A B be an additive functor between abelian cat-

egories. A (total) left derived functor of F is a functor LF : D(A ) D(B),

together with a natural transformation φ : LF ◦πA πB ◦FK, which is univer-
sal in the following sense:

For any other functor G : D(A ) D(B), together with a natural transfor-

mation ψ : G◦πA πB◦FK, there is a unique natural transformation ζ : G LF
such that ψ = φ ◦ ζπA .

Dually, a (total) right derived functor of F is a functor RF : D(A ) D(B),

together with a natural transformation φ : πB ◦FK RF◦πA satisfying a dual
universal property.

Remark 30.3. In general, there is no reason for a total left or right derived
functor to exist.

However, if one does exist, then the universal property guarantees that it is
unique (up to unique natural isomorphism). Therefore we can talk about the
left derived functor or the right derived functor in this case.

It is a bit technical to construct total derived functors between the entire de-
rived categories in general (and requires additional assumptions on A ). To sim-
plify our situation here a bit we consider the full subcategory of right bounded
complexes

C−(A ) = {A• | ∃N ∀n > N An = 0} ⊂ C(A ),
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and its counterparts K−(A ) ⊂ K(A ) and D−(A ) ⊂ D(A ). Similarly we
may consider the category of left bounded complexes C+(A ), the homotopy
category of left bounded complexes K+(A ), and the derived category of left
bounded complexes D+(A ).

Proposition 30.4. Assume A has enough projectives. For any right bounded
complex A• there is a right bounded complex p(A•) of projectives and a quasi-

isomorphism p(A•) A•.
This construction gives a functor

p : D−(A ) K−(A )

which is left adjoint to projection π : K−(A ) D−(A ). Moreover, the unit of

the adjunction ε : idD−(A ) πp is a natural isomorphism.

Proof. We construct p(A•) iteratedly from right to left. Assume all Ai with i >

n are already projective. Pick an epimorphism Pn An with Pn projective,
and consider the following diagram

· · · An−2 An−1
∏
An Pn Pn An+1 · · ·

· · · An−2 An−1 An An+1 · · ·

id id

where the map Pn An+1 is composition, and the map An−2 An−1
∏
An Pn

is obtained from the pullback property. Since the pullback is taken along an
epimorphism the middle square is in fact exact, and thus this morphism of
complexes is a quasi-isomorphism.

Iterating this construction one obtains the desired quasi-isomorphism

ηA• : p(A•) A•.

Now we can first turn p into a functor D−(A ) D−(A ) by setting p(f) =

η−1B ◦ f ◦ ηA for any morphism f : A• B•. Since by Proposition 29.11(3) the
morphism sets in the derived and homotopy category coincide on right bounded

complexes of projectives, p defines a functor D−(A ) K−(A ).
The fact that p is left adjoint to π follows from

HomK−(A )(pA
•, B•)

29.11(3)∼= HomD−(A )(pA
•, B•) ∼= HomD−(A )(A

•, B•),
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where the second isomorphism is due to the fact that the quasi-isomorphism
ηA• becomes an isomorphism in the derived category.

Finally we note that the unit is given by εA• = (ηA•)
−1 – which is defined

on the derived level.

Now we can prove that total right derived functors can be understood using
projective resolutions at least in the setup of right bounded complexes.

Theorem 30.5. Let F : A B be an additive functor between abelian cate-
gories.

• Assume that A has enough projectives. Then on the subcategories of right
bounded complexes there is a total left derived functor

LF : D−(A ) D−(B)

given by LF = πB ◦ FK ◦ p.

• Dually, if A has enough injectives, then there is a total right derived
functor

RF : D−(A ) D−(B)

with respect to left bounded complexes, given by RF = πB ◦ FK ◦ i.

Proof. We only prove the first claim, the second one is dual.
First note that in the diagram

K−(A ) K−(B)

D−(A ) D−(B)

FK

LF

πA πB

we do have a natural transformation φ : LF ◦ πA πB ◦ FK. Recalling that
p is left adjoint to πA (see Proposition 30.4 above) we have the counit η : p ◦
πA idK−(A ). We now choose

φ = (πB ◦ FK)(η) : πB ◦ FK ◦ p︸ ︷︷ ︸
=LF

◦πA πB ◦ FK.
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It only remains to verify that our choice of LF and φ satisfy the universal

property of Definition 30.2. Let G : D−(A ) D−(B) be a different functor,

together with a natural transformation ψ : G ◦ πA πB ◦ FK. If ζ : G LF is
a natural transformation such that ψ = φ ◦ ζπA then

ψp = φp ◦ ζπA ◦p

Since the unit ε : idD−(A ) πA ◦ p is a natural isomorphism, and since

φp = (πB ◦ FK)(ηp) = (πB ◦ FK ◦ p)(ε−1)

we obtain
ζ = LF(ε)−1 ◦ ζπA ◦p ◦ G(ε) = ψp ◦ G(ε).

In particular ζ as uniquely determined.
Conversely, with the choice ζ = ψp ◦ G(ε), we obtain

φ ◦ ζπA = (πB ◦ FK)(η) ◦ ψpπA ◦ G(επA )

= ψ ◦ (G ◦ πA )(η) ◦ G(επA )

= ψ ◦ G(πA (η) ◦ επA︸ ︷︷ ︸
=idD−(A )

)

= ψ.

Thus our choice of LF and φ does satisfy the universal property, so it is the total
left derived functor of F.

Remark 30.6. • Theorem 30.5 shows, in particular, that the appearance
of projective and injective resolutions in the definition of left and right
derived functors is not an arbitrary choice / coincidence. On the con-
trary, the definition of derived functors via a universal property forces
this construction.

• In many cases an obvious analog of Theorem 30.5 also holds for unbounded
complexes. However, for such a result one typically needs that A has
certain colimits (essentially along the poset Z), and that these colimits
are exact.



Index

Ab, 6
abelian category, 30
additive category, 25
adjoint pair of functors, 16

Bn(−), 54
Baer sum, 70
balanced map, 48
biproduct, 25
boundaries, 54

C(−), 53
category, 5

small, 11
coboundaries, see boundaries
cocycles, see cycles
cohomology, see homology
coimage, 29
cokernel, 28
colimit, 19
complex, 53
cone, 56
contravariant functor, see functor, co-

variant
coproduct, 20
cosyzygy, 68
counit

of an adjunction, 17
covariant functor, see functor, covari-

ant

cycles, 54

dense functor, see functor, dense
derived category, 96
derived functor, 65

total, 103
dimension shift, 69
double complex, 74

elementary tensor, 48
enough injectives, 60
enough projectives, 60
epimorphism, 7

split, 7
equivalence of categories, 13
exact functor, 46
exact sequence, 31

short, 31
Ext, 66

is balanced, 75
Yoneda-Ext, 69, 70

faithful functor, see functor, faithful
Five lemma, 36
flat module, 51
free module, 16

is projective, 48
full functor, see functor, full
full subcategory, see subcategory, full
functor, 8

107



108 INDEX

contravariant, 9
covariant, 8
dense, 9
faithful, 9
full, 9

global dimension, 78
Gp, 6

Hn(−), 54
hereditary, 78
Hom-functor

contravariant, 9
covariant, 9

Hom-tensor-adjunction, 50
homology, 54

long exact sequence, 55
homotopic morphisms, 59
homotopy category, 59
Horseshoe lemma, 63

image, 29
injective, 46
injective dimension, 79
injective resolution, 61
isomorphism, 8

kernel, 28

left derived functor
total, 103

left exact functor, 46
Hom, 46

limit, 18

mapping cone, see cone
matrix notation, 27
monomorphism, 7

split, 7
morphism, 5

natural isomorphism, 11
natural transformation, 10
null-homotopic, 59

object, 5
octahedral axiom, 86
opposite category, 6
Ore condition, 94

poset category, 7
pre-abelian category, 29
pre-additive category, 25
presheaf

on a category, 10
on a poset, 10

product, 20
projective, 46
projective dimension, 78
projective resolution, 61

as functor, 62
pullback, 20
pushout, 20

quasi-isomorphism, 59

retraction, 7
right derived functor

total, 103
right exact functor, 46
roof, 94

section, 7
semisimple, 78
Set, 6
shift, 56
short exact sequence, 31
small category, 11
Snake lemma, 40
split epimorphism, 7
split monomorphism, 7
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subcategory, 7
full, 7

suspension, see shift
syzygy, 68

tensor product, 48
is right exact, 51

Top, 6
Tor, 66

is balanced, 77
total derived functor, 103
total left derived functor, 103
total right derived functor, 103
triangulated category, 85

unit
of an adjunction, 17

Yoneda embedding, 13
Yoneda lemma, 12
Yoneda-Ext, 69, 70

Zn(−), 54
zero-object, 25
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