

1 By strict convexity of the exponential map it follows that

$$ab = \exp\left(\frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q)\right) < \frac{1}{p}\exp\log(a^p) + \frac{1}{q}\exp\log(b^q) = \frac{a^p}{p} + \frac{b^q}{q},$$

with equality if and only if $\log(a^p) = \log(b^q)$, that is, if and only if $a^p = b^q$. (This is valid for all $p, q \in (1, \infty)$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$.)

2 Doing nothing (multiplying by 1) in a clever way in Young's inequality:

$$ab = (\epsilon^{1/p}a)(\epsilon^{1/q-1}b) \le \epsilon \frac{a^p}{p} + \frac{b^q}{q\epsilon^{q-1}}.$$

3 By rescaling $x \mapsto x/||x||_p$ and $y \mapsto y/||y||_q$, it suffices to establish that

$$\left|\sum_{n} x_{n} y_{n}\right| \leq 1$$
 for all $x \in \ell^{p}$ and $y \in \ell^{q}$ with $||x||_{p} = 1 = ||y||_{q}$.

Now the claim follows directly from Young's inequality:

$$\left|\sum_{n} x_{n} y_{n}\right| \leq \sum_{n} |x_{n} y_{n}| \leq \sum_{n} \left(\frac{1}{p} |x_{n}|^{p} + \frac{1}{q} |y_{n}|^{q}\right) = \frac{1}{p} ||x||_{p}^{p} + \frac{1}{q} ||y||_{q}^{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

4 The given statement should have been in the other direction. ℓ^p -spaces are *increasing* with $p \in [1, \infty]$, that is, $\ell^p \subset \ell^q$ for $1 \le p < q \le \infty$, because elements in ℓ^p have to decay faster at infinity than those in ℓ^q (in order for the sums to converge). In fact,

$$\ell^p \hookrightarrow \ell^q$$
 with $\|x\|_q \le \|x\|_p$ for all $1 \le p < q \le \infty$.

Proof: Case $q = \infty$ is clear, so assume $q < \infty$. By rescaling, it is enough to establish $||x||_q \le 1$ for $x \in \ell^p$ with $||x||_p = 1$. For such x we must especially have $|x_n| \le 1$ for all n. Therefore $|x_n|^q \le |x_n|^p$ since q > p. Hence,

$$||x||_q^q = \sum_n |x_n|^q \le \sum_n |x_n|^p = ||x||_p^p = 1,$$

and the claim follows.

Note: $L^p(\Omega)$ -spaces, however, are *decreasing* with $p \in [1, \infty]$, provided Ω has finite measure $|\Omega| < \infty$:

$$L^{q}(\Omega) \hookrightarrow L^{p}(\Omega)$$
 with $||f||_{p} \le |\Omega|^{\frac{1}{p} - \frac{1}{q}} ||f||_{q}$ for all $1 \le p < q \le \infty$.

(A straightforward application of Hölder's inequality.) This is in general not true for sets of infinite measure, and in particular, does not hold for \mathbb{R}^n . But, if $f \in L^{p_1}(\Omega) \cap L^{p_2}(\Omega)$ for some $1 \le p_1 < p_2 \le \infty$, with no restrictions on Ω , then $f \in L^p(\Omega)$ for all $p \in [p_1, p_2]$. This is an example of real interpolation and also follows from Hölder's inequality.

5 Canonically, the map $x \mapsto \varphi_x$ where φ_x acts as $\langle \varphi_x, y \rangle = \sum_n x_n y_n$ defines an isometric isomorphism $\ell^p \cong (\ell^q)'$ for $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Indeed, φ_x is linear, and bounded and well-defined by Hölder: $|\langle \varphi_x, y \rangle| \le ||x||_p ||y||_q$. Thus $||\varphi_x||_{(\ell^q)'} \le ||x||_p$, but in fact we have equality: define *y* by

$$y_n = \begin{cases} x_n^{-1} |x_n|^p & \text{if } x_n \neq 0\\ 0 & \text{if } x_n = 0. \end{cases}$$

Then $y \in \ell^q$ with $||y||_q = ||x||_p^{p/q}$, and $\langle \varphi_x, y \rangle = ||x||_p^p$. Since $p - \frac{p}{q} = 1$ by assumption, this yields $||\varphi_x||_{(\ell^q)'} \ge |\langle \varphi_x, y \rangle| / ||y||_q = ||x||_p$. As such, the canonical map is an isometry, and in particular, injective.

For surjectivity, we need some notation. Let e_k denote the sequence with a 1 in the *k*th coordinate and 0 elsewhere. Then every sequence *y* has the representation $y = \sum_k y_k e_k$. Now let $y' \in (\ell^q)'$ and construct *x* as $x_n = \langle y', e_n \rangle$. Is $x \in \ell^p$? Yes, for all $N \in \mathbb{N}$, using that $p = \frac{p}{q} + 1$, we have

$$\sum_{n=0}^{N} |x_n|^p = \sum_{n=0}^{N} \operatorname{sgn}(x_n) |x_n|^{p/q} \langle y', e_n \rangle$$

= $\left\langle y', \sum_{n=0}^{N} \operatorname{sgn}(x_n) |x_n|^{p/q} e_n \right\rangle$
 $\leq ||y'||_{(\ell^q)'} \left\| \sum_{n=0}^{N} \operatorname{sgn}(x_n) |x_n|^{p/q} e_n \right\|_q$
= $||y'||_{(\ell^q)'} \left(\sum_{n=0}^{N} |x_n|^p \right)^{1/q}$

Rearranging gives $\left(\sum_{n=0}^{N} |x_n|^p\right)^{1/p} \le ||y'||_{(\ell^q)'}$, and we can pass to the limit $N \to \infty$. Moreover,

$$\langle \varphi_x, e_k \rangle = \sum_n x_n (e_k)_n = x_k = \langle y', e_k \rangle_n$$

which, by linearity, implies that $\langle \varphi_x, y \rangle = \langle y', y \rangle$ for all $y \in \ell^q$. Hence, $\varphi_x = y'$.