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Solutions to exercise set 12

1 We first show that C0,γ is a normed vector space.

||f ||0,γ = ||f ||∞ + |f |0,γ

is positive and if f = 0 then ||f ||0,γ = 0. If ||f ||0,γ = 0 then in particular ||f ||∞ = 0
which implies f = 0.

||αf ||0,γ = ||αf ||∞ + |αf |0,γ = |α|||f ||∞ + sup
x 6=y,x,y∈Ω̄

|αf(x)− αf(y)|
|x− y|γ

= |α|||f ||0,γ .

Finally the triangle inequality holds:

|f(x)− f(y) + g(x)− g(y)|
|x− y|γ

≤ |f(x)− f(y)|
|x− y|γ

+
|g(x)− g(y)|
|x− y|γ

taking supremum over x, y ∈ Ω̄, x 6= y shows that |f + g|0,γ ≤ |f |0,γ + |g|0,γ and also
||f + g||0,γ ≤ ||f ||0,γ + ||g||0,γ .

C0,γ is a vector space: If f, g ∈ C0,γ and α, β ∈ R then

|αf(x) + βg(x)− (αf(y) + βg(y))| ≤ |α||f(x)− f(y)|+ |β||g(x)− g(y)|
≤ |α|C1|x− y|γ + |β|C2|x− y|γ ≤ C|x− y|γ

which shows that αf + βg ∈ C0,γ .

Finally we show that C0,γ is complete. Let {fn}n∈N be a Cauchy sequence in C0,γ(Ω̄).
Since

||fn − fm||0,γ = ||fn − fm||∞ + |fn − fm|0,γ

we see that {fn} is Cauchy in C(Ω̄) so there exists a function f ∈ C(Ω̄) such that

||fn − f ||∞ → 0

as n → ∞, since the space C(Ω̄) with || − ||∞ is complete. We use this f as the
candidate for the limit. We need to show that we have convergence to f in C0,γ(Ω̄)
and that f ∈ C0,γ(Ω̄).
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If ε > 0 there is an N ∈ N such that

sup
x 6=y,x,y∈Ω̄

|fn(x)− fm(x)− (fn(y)− fm(y))|
|x− y|γ

< ε

for all m,n > N . Hence, for any x, y ∈ Ω̄, x 6= y we may pass to the limit m → ∞
to obtain

|fn(x)− fn(y)− (f(x)− f(y))|
|x− y|γ

< ε

Taking supremum over x, y ∈ Ω̄ gives |f − fn|0,γ → 0 and hence ||f − fn||0,γ → 0 .

To show that f ∈ C0,γ(Ω̄) we use the triangle inequality ||a| − |b|| ≤ |a− b|,

|f(x)− f(y)|
|x− y|γ

≤ ε+
|fn(x)− fn(y)|
|x− y|γ

.

Since fn ∈ C0,γ(Ω̄), it follows that the limit function f ∈ C0,γ(Ω̄).

2 a) We prove the following slightly more general interpolation inequality: Let 0 ≤ γ1 < γ < γ2 ≤ 1
and f ∈ C0,γ2(Ω). Then

‖f‖C0,γ(Ω) ≤ ‖f‖
1−t
C0,γ1 (Ω)

‖f‖t
C0,γ2 (Ω)

,

where t ∈ (0, 1) satisfies γ = (1− t)γ1 + tγ2. (In fact, t = (γ − γ1)/(γ2 − γ1).)

Note that the inequality in the problem text is obtained by taking γ1 = 0 and
noting that |f |C0,0(Ω) = supx,y∈Ω |f(x)− f(y)| ≤ 2 supx∈Ω |f(x)| = 2‖f‖Cb(Ω).

Proof: Observe first that

|f(x)− f(y)|
|x− y|γ

=

(
|f(x)− f(y)|
|x− y|γ1

)1−t( |f(x)− f(y)|
|x− y|γ2

)t
,

so
|f |C0,γ(Ω) ≤ |f |

1−t
C0,γ1 (Ω)

|f |t
C0,γ2 (Ω)

.

Therefore

‖f‖C0,γ(Ω) ≤ ‖f‖
1−t
∞ ‖f‖t∞ + |f |1−t

C0,γ1 (Ω)
|f |t

C0,γ2 (Ω)
=: a1−t

1 bt1 + a1−t
2 bt2.

Next put A = a1 + a2 and Ai = ai/A to see that

a1−t
1 bt1 + a1−t

2 bt2 = A1−t

[
A1

(
b1
A1

)t
+A2

(
b2
A2

)t]
.

Since the map x 7→ xt is concave for t ∈ (0, 1), and A1 +A2 = 1, we further
estimate

A1

(
b1
A1

)t
+A2

(
b2
A2

)t
≤ (b1 + b2)t.

In total, this gives the desired inequality.
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b) First, C0,γ2(Ω) ↪→ C0,γ1(Ω) from ‖ · ‖C0,γ1 (Ω) ≤ ‖ · ‖C0,γ2 (Ω). As regards com-

pactness, let {fn}n ⊂ C0,γ2(Ω) be uniformly bounded, that is, ‖fn‖C0,γ2 (Ω) ≤M <∞
for all n. Hence supn ‖fn‖∞ <∞ by definition of functions in Hölder spaces,
and {fn}n is equibounded. Moreover, {fn}n is equicontinuous, which follows
directly from1

|fn(x)− fn(y)| ≤ |fn|C0,γ2 (Ω)|x− y|
γ2 . |x− y|γ2 .

Arzelà–Ascoli’s theorem and compactness of Ω then yield that there exists a
subsequence {fnk}k converging uniformly to some f in C(Ω), or equivalently,
in C0,0(Ω). Observe also that

|f(x)− f(y)| = lim
k→∞

|fnk(x)− fnk(y)| . |x− y|γ2 ,

so f ∈ C0,γ2(Ω). Interpolating

‖fnk − f‖C0,γ1 (Ω) ≤ ‖fnk − f‖
1− γ1

γ2

C0,0(Ω)
‖fnk − f‖

γ1
γ2

C0,γ2 (Ω)
. ‖fnk − f‖

1− γ1
γ2

C0,0(Ω)

then shows that fnk → f in C0,γ1(Ω), establishing compactness of the embed-
ding.

(If Ω is not bounded, you can only conclude local uniform convergence from
Arzela-Ascoli, but the the arguement still works as before).

3 Linearity of Φ′ follows directly from Y ′ being a vector space:(
x,Φ′(y′1 + cy′2)

)
X,X′ = (Φx, y′1 + cy′2)Y,Y ′

= (Φx, y′1)Y,Y ′ + c(Φx, y′2)Y,Y ′

= (x,Φ′y′1)X,X′ + c(x,Φ′y′2)X,X′ ,

so Φ′(y′1 + cy′2) = Φ′y′1 + cΦ′y′2. As regards injectivity, let y′ ∈ Φ′, i.e.

0 = (x,Φ′y′)X,X′ = (Φx, y′)Y,Y ′ for all x ∈ X.

Since Φ(X) is dense in Y and y′ is continuous,

0 = (y, y′)Y,Y ′ for all y ∈ Y,

i.e. y′ ≡ 0 and Φ′ is injective. Finally, boundedness—and also continuity because Φ′

is linear—is a consequence of

‖Φ′y′‖X′ = sup
‖x‖X=1

∣∣(x,Φ′y′)X,X′
∣∣ = sup

‖x‖X=1

∣∣(Φx, y′)Y,Y ′
∣∣

≤ ‖y′‖Y ′ sup
‖x‖X=1

‖Φx‖Y = ‖y′‖Y ′‖Φ‖.

1By A . B we mean that A ≤ cB for some unimportant constant c > 0. This simplifies estimates.
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4 It is clear that Wk,2(Ω) ↪→Wk−1,2(Ω) for all k and d.

Rellich–Kondrachov’s result yields that W1,2(Ω) is compactly embedded in L2(Ω)
for all d, where we have used that higher Lp norms control lower ones for bounded
sets Ω, that is, ‖ · ‖Lp(Ω) .Ω ‖ · ‖Lq(Ω) for q > p.

Next, let {fn}n ⊂W2,2(Ω) be uniformly bounded. Then both {fn} and {f ′n} lie
in W1,2(Ω). By compactness, there exists a subsequence fnm → f ∈ L2(Ω), and
thereafter a subsubsequence of derivatives f ′nm`

→ g ∈ L2(Ω). By continuity of weak

differentiation, f ′ = g in L2(Ω), so fnm` → f in W1,2(Ω). Hence, W2,2(Ω) is com-

pactly embedded in W1,2(Ω).

Now proceed by induction for general k.
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