

1 Show that $(c_0)' = l^1$.

Note, that $(c_0)'$ is equipped with the sup-norm.

"⊆":

Let $y \in (c_0)'$, given by $\langle y, x \rangle = \sum_{n=1}^{\infty} y_n x_n$ for all $x \in c_0$.

Assume, that $y \notin l^1$, so $\sum_{n=1}^{\infty} |y_n| = \infty$, in particular: $\forall \epsilon > 0 \exists N > 0 : \sum_{n=1}^{N} |y_n| > \epsilon$.

Define $z_i \in c_0$ by setting $(z_i)_n = \begin{cases} sign(y_n) & n \le i \\ 0 & n > i \end{cases}$. Observe, that $||z_i||_{\infty} = 1$.

Then $\langle y, z_i \rangle = \sum_{n=1}^{i} |y_n|$. The sequence $(\langle y, z_i \rangle)_{i \in \mathbb{N}}$ is unbounded as seen before, so y is no bounded linear functional. This is a contradiction!

Let $y \in l^1$. Set $C = \sum_{n=1}^{\infty} |y_n|$.

For any $x \in c_0$ we have, that $|\sum_{n=1}^{\infty} y_n x_n| \leq \sum_{n=1}^{\infty} |y_n| |x_n| \leq \sum_{n=1}^{\infty} |y_n| ||x||_{\infty} = C ||x||_{\infty}$. So y defines a bounded linear functional on c_0 .

ERJ Remark: It remains to show that the norms on $(c_0)'$ and l^1 are the same. A reference from the internet can found here:

http://math.stackexchange.com/questions/678911/the-dual-space-of-c-is-ell1.

2 Show that l^{∞} is not separable:

Let $D = \{x_i\}_{i \in \mathbb{N}} \subseteq l^{\infty}$ be any countable subset of l^{∞} .

Define y by setting $y_n = \begin{cases} 1 & (x_n)_n < 0 \\ -1 & (x_n)_n > 0 \end{cases}$. Obviously $y \in l^{\infty}$ and $|y_n - (x_n)_n| > 1$. Therefore $||y - x_i||_{\infty} = \sup_{n \in \mathbb{N}} |y_n - (x_i)_n| > |y_n - (x_n)_n| > 1 \ \forall i \in \mathbb{N}$. Hence D can not be dense in l^{∞} .

3 Show that l^p is separable for $p \in [1, \infty)$:

Define $D = \{x \in l^p | x_i \in \mathbb{Q}, x_i \neq 0 \text{ only for finitely many } i\}.$

 ${\cal D}$ is countable:

Define $D_n = \{x \in l^p | x_i \in \mathbb{Q}, x_i = 0 \text{ for } i > n\}$. Observe, that $D_n \simeq \mathbb{Q}^n$. Hence D_n is countable. Consequently $D = \bigcup_{n \in \mathbb{N}} D_n$ is countable as well.

D is dense:

Let $y \in l^p$ and $\epsilon > 0$.

Since $\sum_{n=1}^{\infty} |y_n|^p < \infty$, there exists an N, such that $\sum_{n>N} |y_n|^p < \frac{\epsilon^p}{2}$. Since \mathbb{Q} is dense in \mathbb{R} , we can find an $x \in D$ such that

- $|x_n y_n|^p < \frac{\epsilon^p}{2N}$ for $n \le N$
- $x_n = 0$ for n > N

We conclude, that $||x - y||_p^p = \sum_{n \le N} |x_n - y_n|^p + \sum_{n > N} |x_i|^p \le N \frac{\epsilon^p}{2N} + \frac{\epsilon^p}{2} = \epsilon^p$. Taking the p^{th} root on both sides leads to the result.

4 Let $(x_n)_{n \in \mathbb{N}}$, defined by $(x_n)_k = \delta_{n,k}$.

- a) Show, that x_n does not converge weakly in l^1 . Let $x' \in (l^1)'$ defined by $\langle x', y \rangle = \sum_{k=1}^{\infty} (-1)^k y_k$. $|\langle x', y \rangle| \leq \sum_{k=1}^{\infty} |(-1)^k y_k| = \sum_{k=1}^{\infty} |y_k| = ||y||_1$, so x' is indeed bounded. Then $\langle x', x_n \rangle = (-1)^n$ is not a convergent sequence, so x_n can not converge weakly in l^1 .
- b) Show, that x_n is weak* convergent in l^{∞} .

First define weak^{*} convergence:

A sequence $(x'_n \in X')_{n \in \mathbb{N}}$ converges in the weak* topology to $x' \in X'$ if $\langle x'_n, x \rangle \to \langle x', x \rangle \ \forall x \in X$. So weak* convergence is pointwise-convergence. Note, that $(l^1)' = l^{\infty}$.

Show, that the weak* limit of x_n is 0. For any $y = (y_k)_{k \in \mathbb{N}} \in l^1$ we have $\langle x_n, y \rangle = \sum_{k=1}^{\infty} \delta_{n,k} y_k = y_n$. As y is summable, we have, that $y_k \to 0$.

Weak convergence is a type of convergence defined for sequences in a normed space. Weak* convergence is a type of convergence definded for sequences in a dual space.

Elements $x \in l^{\infty}$ can be seen as vectors or as functionals.

Weak convergence in l^{∞} is defined via elements of the dual $(l^{\infty})'$, which is the *ba*-space (https://en.wikipedia.org/wiki/Ba_space). Weak* convergence in l^{∞} is definde via elements of l^1 as $(l^1)' = l^{\infty}$. Since the *ba* space is strictly larger than l^1 , weak* convergence does not imply weak convergence in l^{∞} .

5 Prove that the weak limit is unique.

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X, such that $x_n \rightharpoonup x$ and $x_n \rightharpoonup y$ for $x, y \in X$. So $\langle x', x_n \rangle \rightarrow \langle x', x \rangle$ and $\langle x', x_n \rangle \rightarrow \langle x', y \rangle$ in \mathbb{R} .

As limits are unique in \mathbb{R} , we have $\langle x', x \rangle = \langle x', y \rangle \ \forall x' \in X' \Rightarrow \langle x', x - y \rangle = 0$ $\forall x' \in X'$ by linearity.

Define the bounded linear functional $f : span\{x-y\} \to \mathbb{R}$ by $f(\lambda(x-y)) = \lambda ||x-y||_X$. Due to the Hahn-Banach theorem, there exists a $F \in X'$, such that F(x-y) = f(x-y) = ||x-y||.

Now $0 = \langle F, x - y \rangle = ||x - y||$, so x = y.

6 Exercise 5 in Holden, page 33

First note, that $x_n(s) \to 0$ for all $s \in [0, 1]$, but $||x_n||_{\infty} = 1 \forall n$, so the x_n converge pointwise, but not uniformly and hence strongly or in norm in C[0, 1]

Assume, that the sequence does not converge weakly, so there is a linear functional $f \in X'$ such that $\langle f, x_n \rangle \not\rightarrow 0$. Consequently, there is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ and a $\delta > 0$ such that $|\langle f, x_{n_k} \rangle| > \delta \ \forall k \in \mathbb{N}$.

We can assume, that $n_{k+1} > 2n_k$. Otherwise we omit the n_k , that do not fulfill this property.

Define $y_K = \sum_{k=1}^K x_{n_k}$. Now we prove that $\|y_K\|_{\infty} \le 1 + \sum_{k=0}^K 2^{-k}$ by induction. $\|y_1\|_{\infty} = \|x_{n_1}\|_{\infty} = 1.$

On the interval $\left[0, \frac{2}{n_{K+1}}\right]$ we have:

$$|x_{n_{K+1}}(s)| \le 1$$
$$|x_{n_K}(s)| \le \frac{2}{n_{K+1}} n_K \le \frac{2}{n_{K+1}} \frac{n_{K+1}}{2} = 1$$
$$\vdots$$

$$|x_{n_1}(s)| \le \frac{2}{n_{K+1}}n_1 \le \frac{2}{n_{K+1}}\frac{n_{K+1}}{2^K} = 2^{-K+1}$$

Adding this up, we can conclude $|y_{K+1}(s)| \leq 1 + \sum_{k=0}^{K+1} 2^{-k}$. On the intervall $[\frac{2}{n_{K+1}}, 1]$ we have $x_{n_{K+1}}(s) = 0$. Therefore

$$|y_{K+1}(s)| = |y_K(s)| \le 1 + \sum_{k=0}^{K} 2^{-k} \le 1 + \sum_{k=0}^{K+1} 2^{-k}.$$

As the geometric series is converging, the y_K are uniformely bounded: $||y_k||_{\infty} < 3$. By linearity of f we have $\langle f, y_K \rangle = \sum_{k=1}^K \langle f, x_{n_k} \rangle > K\delta$. Therefore we can compute the operator norm of f:

$$\|f\| = \sup_{x \neq 0} \frac{|\langle f, x \rangle|}{\|x\|_{\infty}} \ge \sup_{K} \frac{|\langle f, y_{K} \rangle|}{\|y_{K}\|_{\infty}} \ge \sup_{K} \frac{K\delta}{3} = \infty$$

Consequently $f \notin X'$. This is a contradiction!