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Solutions to exercise set 2

1 Show that (c0)
′ = l1.

Note, that (c0)′ is equipped with the sup-norm.

"⊆":
Let y ∈ (c0)

′, given by 〈y, x〉 =
∑∞

n=1 ynxn for all x ∈ c0.

Assume, that y /∈ l1, so
∑∞

n=1 |yn| =∞, in particular: ∀ε > 0 ∃N > 0 :
∑N

n=1 |yn| >
ε.

Define zi ∈ c0 by setting (zi)n =

{
sign(yn) n ≤ i
0 n > i

. Observe, that ‖zi‖∞ = 1.

Then 〈y, zi〉 =
∑i

n=1 |yn|. The sequence (〈y, zi〉)i∈N is unbounded as seen before, so
y is no bounded linear functional. This is a contradiction!

"⊇":
Let y ∈ l1. Set C =

∑∞
n=1 |yn|.

For any x ∈ c0 we have, that |
∑∞

n=1 ynxn| ≤
∑∞

n=1 |yn||xn| ≤
∑∞

n=1 |yn|‖x‖∞ =
C‖x‖∞. So y defines a bounded linear functional on c0.

ERJ Remark: It remains to show that the norms on (c0)
′ and l1 are the same. A

reference from the internet can found here:

http://math.stackexchange.com/questions/678911/the-dual-space-of-c-is-ell1.

2 Show that l∞ is not seperable:

Let D = {xi}i∈N ⊆ l∞ be any countable subset of l∞.

Define y by setting yn =

{
1 (xn)n < 0

−1 (xn)n > 0
.

Obviously y ∈ l∞ and |yn − (xn)n| > 1.

Therefore ‖y − xi‖∞ = supn∈N |yn − (xi)n| > |yn − (xn)n| > 1 ∀i ∈ N.
Hence D can not be dense in l∞.

3 Show that lp is seperable for p ∈ [1,∞):

Define D = {x ∈ lp|xi ∈ Q, xi 6= 0 only for finitely many i}.
D is countable:

Define Dn = {x ∈ lp|xi ∈ Q, xi = 0 for i > n}. Observe, that Dn ' Qn. Hence Dn

is countable. Consequently D =
⋃
n∈NDn is countable as well.
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D is dense:

Let y ∈ lp and ε > 0.

Since
∑∞

n=1 |yn|p <∞, there exists an N , such that
∑

n>N |yn|p <
εp

2 .

Since Q is dense in R, we can find an x ∈ D such that

• |xn − yn|p < εp

2N for n ≤ N
• xn = 0 for n > N

We conclude, that ‖x− y‖pp =
∑

n≤N |xn − yn|p +
∑

n>N |xi|p ≤ N
εp

2N + εp

2 = εp.

Taking the pth root on both sides leads to the result.

4 Let (xn)n∈N, defined by (xn)k = δn,k.

a) Show, that xn does not converge weakly in l1.
Let x′ ∈ (l1)′ defined by 〈x′, y〉 =

∑∞
k=1(−1)kyk.

| 〈x′, y〉 | ≤
∑∞

k=1 |(−1)kyk| =
∑∞

k=1 |yk| = ‖y‖1, so x′ is indeed bounded.
Then 〈x′, xn〉 = (−1)n is not a convergent sequence, so xn can not converge
weakly in l1.

b) Show, that xn is weak* convergent in l∞.
First define weak* convergence:
A sequence (x′n ∈ X ′)n∈N converges in the weak* topology to x′ ∈ X ′ if
〈x′n, x〉 → 〈x′, x〉 ∀x ∈ X. So weak* convergence is pointwise-convergence.
Note, that (l1)′ = l∞.
Show, that the weak* limit of xn is 0. For any y = (yk)k∈N ∈ l1 we have
〈xn, y〉 =

∑∞
k=1 δn,kyk = yn. As y is summable, we have, that yk → 0.

Weak convergence is a type of convergence defined for sequences in a normed
space. Weak* convergence is a type of convergence definded for sequences in a
dual space.
Elements x ∈ l∞ can be seen as vectors or as functionals.
Weak convergence in l∞ is defined via elements of the dual (l∞)′, which is the
ba-space (https://en.wikipedia.org/wiki/Ba_space). Weak* convergence in l∞

is definde via elements of l1 as (l1)′ = l∞. Since the ba space is strictly larger
than l1, weak* convergence does not imply weak convergence in l∞.

5 Prove that the weak limit is unique.

Let (xn)n∈N be a sequence in X, such that xn ⇀ x and xn ⇀ y for x, y ∈ X.

So 〈x′, xn〉 → 〈x′, x〉 and 〈x′, xn〉 → 〈x′, y〉 in R.
As limits are unique in R, we have 〈x′, x〉 = 〈x′, y〉 ∀x′ ∈ X ′ ⇒ 〈x′, x− y〉 = 0
∀x′ ∈ X ′ by linearity.

Define the bounded linear functional f : span{x−y} → R by f(λ(x−y)) = λ‖x−y‖X .
Due to the Hahn-Banach theorem, there exists a F ∈ X ′, such that F (x − y) =
f(x− y) = ‖x− y‖.
Now 0 = 〈F, x− y〉 = ‖x− y‖, so x = y.
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6 Exercise 5 in Holden, page 33

First note, that xn(s) → 0 for all s ∈ [0, 1], but ‖xn‖∞ = 1 ∀n, so the xn converge
pointwise, but not uniformely and hence strongly or in norm in C[0, 1]

Assume, that the sequence does not converge weakly, so there is a linear functional
f ∈ X ′ such that 〈f, xn〉 6→ 0. Consequently, there is a subsequence (xnk

)k∈N and a
δ > 0 such that | 〈f, xnk

〉 | > δ ∀k ∈ N.
We can assume, that nk+1 > 2nk. Otherwise we omit the nk, that do not fulfill this
property.

Define yK =
∑K

k=1 xnk
. Now we prove that ‖yK‖∞ ≤ 1 +

∑K
k=0 2

−k by induction.

‖y1‖∞ = ‖xn1‖∞ = 1.

On the intervall [0, 2
nK+1

] we have:

|xnK+1(s)| ≤ 1

|xnK (s)| ≤
2

nK+1
nK ≤

2

nK+1

nK+1

2
= 1

...

|xn1(s)| ≤
2

nK+1
n1 ≤

2

nK+1

nK+1

2K
= 2−K+1

Adding this up, we can conclude |yK+1(s)| ≤ 1 +
∑K+1

k=0 2−k.

On the intervall [ 2
nK+1

, 1] we have xnK+1(s) = 0. Therefore

|yK+1(s)| = |yK(s)| ≤ 1 +

K∑
k=0

2−k ≤ 1 +

K+1∑
k=0

2−k.

As the geometric series is converging, the yK are uniformely bounded: ‖yk‖∞ < 3.

By linearity of f we have 〈f, yK〉 =
∑K

k=1 〈f, xnk
〉 > Kδ.

Therefore we can compute the operator norm of f :

‖f‖ = sup
x 6=0

| 〈f, x〉 |
‖x‖∞

≥ sup
K

| 〈f, yK〉 |
‖yK‖∞

≥ sup
K

Kδ

3
=∞

Consequently f 6∈ X ′. This is a contradiction!
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