

MA8105 Nonlinear PDEs and Sobolev spaces Spring 2019

Exercise set 2

1 (Holden Ex 4 p 34) Show that $(c_0)' = \ell^1$.

2 Show ℓ^{∞} is not separable.

Hint: For any countable $\{x_i\} \subset \ell^{\infty}$, find $y \in \ell^{\infty}$ s.t. $||x_i - y||_{\infty} \ge 1$ for all *i*.

3 Show that D is dense in ℓ^p for $p \in [1, \infty)$ when

$$D = \left\{ x = \{x_k\}_k : x_k \in \mathbb{Q}, \text{ finite number of } x_k \neq 0 \right\}$$

Hint: The set can be seen as a countable union of countable sets (why?) and is hence countable (you do not need to prove this).

- 4 Let $x_n = \{x_{n,k}\}_n \in \ell^1$ be defined by $x_{n,k} = 1$ for n = k and 0 otherwise.
 - **a)** Show that x_n does not converge weakly in ℓ^1 .
 - **b)** Show that x_n converge weakly * in ℓ^{∞} . Explain what this convergence is and why it does not imply weak convergence in this case.
- **5** (Ex 2 in Holden p 34) Prove that the weak limit is unique.
- 6 Ex 5 in Holden p 34.