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Solutions to exercise set 3

3 The predual of `1 is c0, the space of bounded sequences tending to 0 at infinity. Then

xn
∗
⇀ 0 in `1 since for any y ∈ c0,

〈x, y〉 =
∑
k

xn,kyk = yn → 0.

4 Let x : [0, T ] → Rn be the solution of the ODE ẋ = f(x), x(0) = x0. We will work
with the integral form

(1) x(t) = x0 +

∫ t

0
f(x(s))ds, t ∈ [0, T ].

The corresponding forward Euler discretisation is

y(t) = y(n∆t) + (t− n∆t)f(y(n∆t)), t ∈ [n∆t, (n+ 1)∆t],

∆t = T
N , and y(0) = x0. Note that y is a continuous function coinciding with the

Euler approximation at the points n∆t. Assume that f is Lipschitz,

|f(x)− f(y)| ≤ Lf |x− y|, x, y ∈ Rn.

a) Problem: Show by a direct argument that

|y(t)| ≤ |x0| eLfT + |f(0)|
∫ T

0
eLf t dt =: M.

Solution: Set tn = n∆t.

|f(y(tj))| ≤ |f(0)|+ |f(y(tj))− f(0)| ≤ |f(0)|+ Lf |y(tj)| .

Using this recursively, we get

|y(tn)| ≤ |y(tn−1)|+ ∆t |f(y(tn−1))|
≤ |y(tn−1)|+ ∆t (Lf |y(tn−1)|+ |f(0)|)
= (1 + Lf∆t) |y(tn−1)|+ ∆t |f(0)|
≤ (1 + Lf∆t) (|y(tn−2)|+ ∆t (Lf |y(tn−2)|+ |f(0)|)) + ∆t |f(0)|
...

≤ (1 + Lf∆t)n |x0|+
n−1∑
m=0

(1 + Lf∆t)m∆t |f(0)|

≤ |x0| eLfn∆t + |f(0)|∆t
n−1∑
m=0

eLfm∆t.
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Seeking a bound for all times t ∈ [0, T ], we may use that

|y(t)| ≤ |y(T )| = |y(tN )|

≤ |x0| eLfT + |f(0)|
∫ T

0
eLf t dt.

b) Problem: Show by a direct argument that

|y(t)− y(s)| ≤ |t− s| max
|r|≤M

|f(r)| =: K, t ∈ [0, T ] .

Solution: We may assume without any loss of generality that 0 ≤ s < t ≤ T .
Since s is strictly smaller than t, we can then find a discretization such that

tm−1 < s ≤ tm < · · · < tn ≤ t < tn+1.

Then

y(t)− y(s) = y(t)− yn + (yn − yn−1) + · · ·+ (ym+1 − ym) + ym − y(s)

= (t− tn)f(y(tn)) + ∆t
n−1∑
k=m

f(y(tk)) + (tm − s)f(y(tm−1),

and hence

|y(t)− y(s)| ≤ (|t− tn|+ (m− n)∆t+ |tm − s|) max
τ∈[s,t]

|f(y(τ))|

≤ |t− s| max
|r|≤M

|f(r)|.

c) Problem: Let ∆t = ∆tN = T
N , N = 1, 2, 3, . . . and y = y∆tN = yN . Use the

Arzelà–Ascoli theorem to find a subsequence of {yN}N converging uniformly
on [0, T ].

Solution: By a), there is an M ≥ 0 such that

‖yN‖∞ ≤M for all N,

and hence {yN}N is equibounded. By b), there is a K ≥ 0 such that

|yN (t)− yN (s)| ≤ K|t− s| for all N,

and hence the sequence is also equicontinuous. Hence, by the Arzelà–Ascoli
theorem, there exists a subsequence {yNk

}Nk
and a continuous limit ȳ such

that
lim

Nk→∞
‖yNk

− ȳ‖∞ = 0,

where local uniform convergence implies uniform convergence since [0, T ] is
compact.

d) Problem: Verify that the uniform limit ỹ of any subsequence of the sequence
{yN}N from (c) is a solution of (1). (Hence also the subsequence found in (c)).

Solution: Let {yNk
}Nk
⊂ {yN}N and ỹ such that limNk→∞‖yNk

− ỹ‖∞ = 0.
Then

yNk
(t) = x0 + ∆tNk

n−1∑
j=0

f(yNk
(j∆tNk

)) + (t− n∆tNk
)f(yNk

(n∆tNk
)),(2)
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for n∆tNk
≤ t < (n+ 1)∆tNk

.

Since (t− n∆tNk
) < ∆tNk

−−−−→
Nk→∞

0,

lim
Nk→∞

(t− n∆tNk
)f(yNk

(n∆tNk
)) = 0.

We now show that the term with the sum in (2) converge to
∫ t

0 f(ỹ(s))ds. Let
tj := j∆tNk

, then∣∣∣∣∣∣∆tNk

n−1∑
j=0

f(yNk
(tj))−

∫ t

0
f(ỹ(s)) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

∫ tj+1

tj

f(yNk
(tj)) ds−

n−1∑
j=0

∫ tj+1

tj

f(ỹ(s)) ds

∣∣∣∣∣∣
≤

n−1∑
j=0

∫ tj+1

tj

|f(yNk
(tj))− f(ỹ(s))| ds

≤ Lf
n−1∑
j=0

∫ tj+1

tj

|yNk
(tj)− ỹ(s)| ds

= Lf

n−1∑
j=0

∫ tj+1

tj

|yNk
(tj)− yNk

(s) + yNk
(s)− ỹ(s)| ds

≤ Lf
n−1∑
j=0

∫ tj+1

tj

(K|tj − s|+ ‖yNk
− ỹ‖∞) ds

≤ Lf
n−1∑
j=0

(
K(∆tNk

)2 + ∆tNk
‖yNk

− ỹ‖∞
)

= Lfn
(
K(∆tNk

)2 + ∆tNk
‖yNk

− ỹ‖∞
)

≤ LfT (K(∆tNk
) + ‖yNk

− ỹ‖∞) −−−−→
Nk→∞

0.

Since x0 is fixed and limNk→∞ yNk
(t) = ỹ(t) for every t ∈ [0, T ] by uniform

convergence, we may pass to the limit in (2) to see that limNk→∞ yNk
(t) = ỹ(t)

satisfies (1).

e) Problem: Since the ODE has a unique solution (f is Lipschitz), conclude that
the whole sequence converges.

Solution: By (c) and (d), x := ȳ (where ȳ defined in (c)!) is a solution of
(1). By uniqueness it is the only one.

Assume that the whole sequence {yN}N does not converge to x. Then by
definition of convergence there exists an ε0 > 0 and a subsequence

{
yNj

}
Nj

such that

(3)
∣∣yNj (t)− x(t)

∣∣ ≥ ε0 for all Nj .

But since this subsequence is equibounded and equicontinuous by (a) and (b),
we then have by the Arzelà–Ascoli theorem that there exists a subsubsequence{
yNji

}
Nji

which converges uniformly to a limit ỹ. By (d), ỹ = x, and this

contradicts (3). Hence we conclude that the whole sequence converges to x.
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