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State and prove Proposition 2.12 p. 14 in the Holden note.
State and prove Proposition 2.14 p. 14 in the Holden note.

Let {xp}n C ¢! be defined by z,; = 1 when n = k and 0 otherwise. Prove that

* .
Ty — 0 in £1.

Note that by last weeks problems, it does not converge weakly in ¢'! Hence we
have an example showing that weak-* convergence is weaker than weak convergence.

Let z : [0,7] — R™ solve the ODE & = f(z), x(0) = zp, or in integral form,

t
2(t) = 20 + / F@(s))ds, te[0,T].
0
The corresponding forward Euler discretisation is
y(t) = y(nAt) + (t — nAt) f(y(nAt)), t € [nAt, (n+ 1)At],

At = %, and y(0) = zp. Note that y is a continuous function coinciding with the
Euler approximation at the points nAt. Assume that f is Lipschitz,

|f(z) = f(y)]| < Lflz —yl, =x,yeR™

Prove the convergence of this method through the following steps:

a) Show by a direct argument that

T
)] < foolebT 4 |7(0)] [ Mt = M, te 0.7)
0
b) Show by a direct argument that
_ < |t — T].
ly(t) —y(s)] < [t — s ‘{@ﬁlf(t?)\, st €10,T]
c) Let At = %,N: 1,2,3,... and y = yar = yn.

Use the Arzela-Ascoli theorem to find a subsequence of {yn, }n, C {yn}n
and continuous function g such that yy, — ¢ uniformly on [0, 7.
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Exercise set 3

d) Verify that the uniform limit g of any subsequence {yy }n from the Euler method
is a solution of the ODE in integral form. (I.e. also the subsequence in c)).

e) Since the ODE has a unique solution (f is Lipschitz), conclude that the whole

sequence converges.

Hint: Use the argument for the corollary/2nd part of the Eberlein-Smuljan
theorem.
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