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The reflection operator for functions is defined as

g fcr(x> = f(_x)

Let T € D' be an arbitrary distribution defined by f € L} .. Then, (T}), = T},. If
¢ € C is a test function, then

(Ty)o(9) = Ty, é(x) dx
:/fa(x)¢(x)da:
R

_ /R F(—2)6(x) da
- /R [(2)6(~2) da

= Tf (¢0)
which follows from changing variables. We have motivated the following definition:
T5(¢) = T(¢o) (1)

From the definition of even and odd functions, we get the following characterizations:

T is even = Ty
T is odd — T

T (2a)
-T (2b)

Let T : C2° — R be linear. First, we assume that 7" is continuous on Cg°. Since
0 € C2°, T will also be continuous at 0, so there is nothing more to prove here.

Then, assume that 7' € D’ is continuous at 0. Let ¢, — ¢ in C° for ¢ # 0.
Since T is linear, and continuous at 0, we get

lim [T (¢n) = T(¢)] = lim T(¢n — ¢) = T(0) = T(¢o) =0

n—oo n—oo

Hence, T € D’ is continuous for every ¢ € C°. We have now proven that the
following equivalence is true:

T € D' is continuous at C2° <= T € D’ is continuous at 0
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Let 11,75 € D' and a1, as € C, and define a linear combination T = a1 Ty + asTh by
(1 Th + 2 To)(¢) := a1 T1(P) + azT(¢).
Then T is linear:

(a1 Ty + Ty, B1g1 + Paga)
= o (T1, B1¢1 + Paa) + aa(Ts, Brd1 + Pag2)
= a1S1 (T, ¢1) + 1 B2(T1, ¢2) + a2B1(Ta, ¢1) + a2Ba(Th, 2)
= Bi{anTi + aoTy, ¢1) + Balan T + a2Th, ¢2)

T is continuous: Assume that ¢, — ¢ in C°:

lim [(a1T1 + 2T5)(Pn) — (a1 T1 + a2T2)(9)]

n—0o0

(1T + 02T2)(én — @)

= lim
n—oo

=0

We have shown that T : Cg° — R is a linear and continuous functional and hence
an element of D’. Thus, D’ is closed under linear combinations and therefore is a
vector space.

Let {h;}32, be a sequence of Friedriech mollifiers in R™, defined by h;(z) = j"h(jz).
Here, h is an arbitrary function with the following properties:

h:C*vw——1[0,1 , |hlgrwsy =1 , supp(h)C B(0,1) (3)
where B(0,1) is an open ball of radius 1 centered at the origin. We see that

125l prgny =1, supp(h;) € B(0,1/5) (4)

1
loc

Our main quantity of interest is the function f € L; (R™). We define its reqularizer

as the convolution

ﬁ@ﬁﬂ@*ﬁmaz/‘m@vm—yMy (5)

n

Let R > 0. By Fubini’s theorem and the properties of h; , we obtain

/’ (@) — f3(2)) da
B(0,R)

_/B(QR) f(=) /|y|<1/j hj(y) dy—/|y|<1/j hi(y) f(x —y) dy

~ [ he) - s - ldy
B(0,R) |/ |y|<1/j

h; ) — f(z —y)|dxd

= /|y|<1/j ) /B(O,R) Fla) = JC vl Y

< [l ( sup / |f () —f(a?—y)ldx>
ul<1/5 /BO.R)

dzx

dzr
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By letting 5 — oo and using the continuity of translation in L':

sup/ |f(z) — f(x —y)|de -0 as e€—0
B(O,R)

ly|<e

(holds for (uniformly) functions, and then by approximation for any L!-function),
we get

lim |f(z) = fj(z)| dz = 0. (6)
J=% JB(0,R)

The original given statement is
| r@o@ar=0 . voec (7
If ¢(x) =h;(y—x) € C°, then for all j € N and y € R", we obtain
fi = [ @ty —a)de =0 8
Combining the two identities @ and we get

/ f ()| da

B(0,R)

- / (@) = fi() + f(2)| da
B(0,R)

x) — fi(x)| de
S/B@,R)'f” f3(@) +/B(O

— 0 =0

£ ()| dx
R)

)

=0

Thus, we have proven that for all f € LllOC and ¢ € C°, the statement below is true:

/f($)¢(33)d1‘:0 — f=0ae. inR"
Q

T3 is well-defined: Let ¢ € C2°(0,2) be a test function, and supp(¢) C (0, 1). Since
(0,1) is an open set, it implies that

dist(supp(¢),0) >0
Therefore, it exists an m € N depending on supp(¢) such that
1
n>m = ¢ <> =0
n

In this way, T3 becomes finite for all ¢ € C2°:

T3<¢>=§/016<x—i) otryar=3"5(1)

n=1
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T3 is linear: Let ¢1,¢2 € C2°, and m € N such that

n>m — ¢1<71L):0 , (;52<711>:0

Then, T3 is linear:

T3(a1¢1 + asgo) = Z [Oélqbl (i) + a9 (;)

)
n=1
= ni::l [algbl (i) + az¢p (:L)]
— alni::lqﬁl (i) +a21§:1</>2 <711>
= a1T3(¢1) + 2T3(¢2)

T3 is continuous: Assume that ¢; — ¢ in C2°, K CC (0,2) such that supp(¢;) C
K, and m € N such that % ¢ K for n > m. Then

. 1 - 1 1
jliH)lng(gf)j —¢) = jlggo; [(b] <n> —¢ <n>} B

Thus, we have proven that T3 is a distribution on D’(0,2).

@ Let T € D' be an arbitrary distribution, and « is a multi-index such that |a| < oo,
and 0T is defined in the usual way.

0T is linear: Since ¢ € C°® = 0% € C°, for ¢1,¢2 € C and linearity
of T,
(09T, a1 + o)
= (=D)INT, 010%1 + 20 o)
= a1 (=1)*UT, 0%¢1) + az(~1) 1T, 0%2)
= a1(0%T, ¢1) + a2 (0T, p2)

0%T is continuous: Let ¢; — ¢ in CZ°. By the continuity of T, we get

<aaT7 ¢7’l>
= (=1)*UT,0%¢,)
= (=1)eNT, 0%9)
= (0%T, )

We have finally proven the following statement:

TeD = 9°TeD

T is well-defined: Let K CC R, and ¢ € C2° such that supp(¢) C K. By the

Heine-Borel theorem, a set in R is compact iff it is both closed and bounded. Thus,
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¢ and all of its derivatives vanish outside the bounded set K. There is an m € N
depending on supp(¢) such that K "N ={1,2,3,...,m}. This implies that

T(¢) = " (n)=> ¢"(n)
n=1 n=1

Since ¢ is smooth and the sum above is finite, T' is well-defined.

T is linear: Assume that ¢1, ¢y € C°, and m € N such that n ¢ supp(¢1)Usupp(¢p2)
for n > m. By the linearity of derivatives, T is also linear:

8

T(a1¢1 + ande) = Z a1 + Oé2¢2 (n)
Z a1 + agga) ™ (n)

a3 +ary )
n=1 n=1
= a1 T(¢1) + a2T(¢2)
T is continuous: Assume that ¢; — ¢ in C°, and m € N such that
n>m = n¢KD>|supp(d))
JEN
Then, T is continuous:

lim T'(¢; — ¢) = lim [Z(@ - ¢><”><n>] =0

j—o00 j—00
n=1

Thus, we have finally proven that T' € D’ is a distribution.

Let f(x) = In|z|, and T} is the associated distribution. We let ¢ € C2° and integrate
by parts to find the derivative (T)":

e}

(Ty), ) = — / In [z|¢ (z) de

—00

= _liL% [/__ In|z|¢ () d:v—{—/e In |z|¢'(x) dl‘:|

oo

——tim 6~ — o mnle + i | [Ny [T 0

e—0 — 0o

= lim —~dz
€20 J|gl>e T

(i)
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where PV is an abbreviation of the Cauchy Principal Value. The first term vanished
because of the Mean Value Theorem:

d(—€) — ¢(€) < 2¢€[|¢/[|o
limeln(e) =0

e—0

Thus, the derivative of In|z|, in the sense of distributions, is

PV (i) (9)
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