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Solutions to exercise set 4

1 The reflection operator for functions is defined as

σ : fσ(x) = f(−x)

Let T ∈ D′ be an arbitrary distribution defined by f ∈ L1
loc. Then, (Tf )σ = Tfσ . If

φ ∈ C∞c is a test function, then

(Tf )σ(φ) = Tfσφ(x) dx

=

∫
R
fσ(x)φ(x) dx

=

∫
R
f(−x)φ(x) dx

=

∫
R
f(x)φ(−x) dx

= Tf (φσ)

which follows from changing variables. We have motivated the following definition:

Tσ(φ) = T (φσ) (1)

From the definition of even and odd functions, we get the following characterizations:

T is even =⇒ Tσ = T (2a)
T is odd =⇒ Tσ = −T (2b)

2 Let T : C∞c → R be linear. First, we assume that T is continuous on C∞c . Since
0 ∈ C∞c , T will also be continuous at 0, so there is nothing more to prove here.

Then, assume that T ∈ D′ is continuous at 0. Let φn −→ φ in C∞c for φ 6= 0.
Since T is linear, and continuous at 0, we get

lim
n→∞

[T (φn)− T (φ)] = lim
n→∞

T (φn − φ) = T (0) = T (φ0) = 0

Hence, T ∈ D′ is continuous for every φ ∈ C∞c . We have now proven that the
following equivalence is true:

T ∈ D′ is continuous at C∞c ⇐⇒ T ∈ D′ is continuous at 0
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3 Let T1, T2 ∈ D′ and α1, α2 ∈ C, and define a linear combination T̃ = α1T1 +α2T2 by

(α1T1 + α2T2)(φ) := α1T1(φ) + α2T2(φ).

Then T̃ is linear:

〈α1T1 + α2T2, β1φ1 + β2φ2〉
= α1〈T1, β1φ1 + β2φ2〉+ α2〈T2, β1φ1 + β2φ2〉
= α1β1〈T1, φ1〉+ α1β2〈T1, φ2〉+ α2β1〈T2, φ1〉+ α2β2〈T2, φ2〉
= β1〈α1T1 + α2T2, φ1〉+ β2〈α1T1 + α2T2, φ2〉

T̃ is continuous: Assume that φn −→ φ in C∞c :

lim
n→∞

[(α1T1 + α2T2)(φn)− (α1T1 + α2T2)(φ)]

= lim
n→∞

(α1T1 + α2T2)(φn − φ)

= 0

We have shown that T̃ : C∞c 7−→ R is a linear and continuous functional and hence
an element of D′. Thus, D′ is closed under linear combinations and therefore is a
vector space.

4 Let {hj}∞j=1 be a sequence of Friedriech mollifiers in Rn, defined by hj(x) = jnh(jx).
Here, h is an arbitrary function with the following properties:

h : C∞c 7−→ [0, 1] , ‖h‖L1(Rn) = 1 , supp(h) ⊂ B(0, 1) (3)

where B(0, 1) is an open ball of radius 1 centered at the origin. We see that

‖hj‖L1(Rn) = 1 , supp(hj) ⊂ B(0, 1/j) (4)

Our main quantity of interest is the function f ∈ L1
loc(Rn). We define its regularizer

as the convolution

fj(x) = (hj ∗ f)(x) =
∫
Rn
hj(y)f(x− y) dy (5)

Let R > 0. By Fubini’s theorem and the properties of hj (4), we obtain∫
B(0,R)

|f(x)− fj(x)| dx

=

∫
B(0,R)

∣∣∣∣∣f(x)
∫
|y|<1/j

hj(y) dy −
∫
|y|<1/j

hj(y)f(x− y) dy

∣∣∣∣∣ dx
=

∫
B(0,R)

∣∣∣∣∣
∫
|y|<1/j

hj(y)[f(x)− f(x− y)] dy

∣∣∣∣∣ dx
≤
∫
|y|<1/j

hj(y)

∫
B(0,R)

|f(x)− f(x− y)| dx dy

≤ ‖hj‖L1

(
sup
|y|<1/j

∫
B(0,R)

|f(x)− f(x− y)| dx

)
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By letting j −→∞ and using the continuity of translation in L1:

sup
|y|<ε

∫
B(0,R)

|f(x)− f(x− y)| dx→ 0 as ε→ 0

(holds for (uniformly) functions, and then by approximation for any L1-function),
we get

lim
j→∞

∫
B(0,R)

|f(x)− fj(x)| dx = 0. (6)

The original given statement is∫
Ω
f(x)φ(x) dx = 0 , ∀φ ∈ C∞c (7)

If φ(x) = hj(y − x) ∈ C∞c , then for all j ∈ N and y ∈ Rn, we obtain

fj(y) =

∫
Ω
f(x)h(y − x) dx = 0 (8)

Combining the two identities (6) and (8) we get∫
B(0,R)

|f(x)| dx

=

∫
B(0,R)

|f(x)− fj(x) + fj(x)| dx

≤
∫
B(0,R)

|f(x)− fj(x)| dx︸ ︷︷ ︸
−→ 0

+

∫
B(0,R)

|fj(x)| dx︸ ︷︷ ︸
= 0

= 0

Thus, we have proven that for all f ∈ L1
loc and φ ∈ C∞c , the statement below is true:∫

Ω
f(x)φ(x) dx = 0 =⇒ f = 0 a.e. in Rn

5 T3 is well-defined: Let φ ∈ C∞c (0, 2) be a test function, and supp(φ) ⊂ (0, 1). Since
(0, 1) is an open set, it implies that

dist(supp(φ), 0) > 0

Therefore, it exists an m ∈ N depending on supp(φ) such that

n > m =⇒ φ

(
1

n

)
= 0

In this way, T3 becomes finite for all φ ∈ C∞c :

T3(φ) =

∞∑
n=1

∫ 1

0
δ

(
x− 1

n

)
φ(x) dx =

m∑
n=1

φ

(
1

n

)
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T3 is linear: Let φ1, φ2 ∈ C∞c , and m ∈ N such that

n > m =⇒ φ1

(
1

n

)
= 0 , φ2

(
1

n

)
= 0

Then, T3 is linear:

T3(α1φ1 + α2φ2) =
∞∑
n=1

[
α1φ1

(
1

n

)
+ α2φ2

(
1

n

)]

=

m∑
n=1

[
α1φ1

(
1

n

)
+ α2φ2

(
1

n

)]

= α1

m∑
n=1

φ1

(
1

n

)
+ α2

m∑
n=1

φ2

(
1

n

)
= α1T3(φ1) + α2T3(φ2)

T3 is continuous: Assume that φj −→ φ in C∞c , K ⊂⊂ (0, 2) such that supp(φj) ⊂
K, and m ∈ N such that 1

n /∈ K for n > m. Then

lim
j→∞

T3(φj − φ) = lim
j→∞

m∑
n=1

[
φj

(
1

n

)
− φ

(
1

n

)]
= 0

Thus, we have proven that T3 is a distribution on D′(0, 2).

6 Let T ∈ D′ be an arbitrary distribution, and α is a multi-index such that |α| <∞,
and ∂αT is defined in the usual way.

∂αT is linear: Since φ ∈ C∞c =⇒ ∂αφ ∈ C∞c , for φ1, φ2 ∈ C∞c and linearity
of T ,

〈∂αT, α1φ1 + α2φ2〉
= (−1)|α|〈T, α1∂

αφ1 + α2∂
αφ2〉

= α1(−1)|α|〈T, ∂αφ1〉+ α2(−1)|α|〈T, ∂αφ2〉
= α1〈∂αT, φ1〉+ α2〈∂αT, φ2〉

∂αT is continuous: Let φj −→ φ in C∞c . By the continuity of T , we get

〈∂αT, φn〉
= (−1)|α|〈T, ∂αφn〉
→ (−1)|α|〈T, ∂αφ〉
= 〈∂αT, φ〉

We have finally proven the following statement:

T ∈ D′ =⇒ ∂αT ∈ D′

7 T is well-defined: Let K ⊂⊂ R, and φ ∈ C∞c such that supp(φ) ⊂ K. By the
Heine-Borel theorem, a set in R is compact iff it is both closed and bounded. Thus,
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φ and all of its derivatives vanish outside the bounded set K. There is an m ∈ N
depending on supp(φ) such that K ∩ N = {1, 2, 3, . . . ,m}. This implies that

T (φ) =

∞∑
n=1

φ(n)(n) =

m∑
n=1

φ(n)(n)

Since φ is smooth and the sum above is finite, T is well-defined.

T is linear: Assume that φ1, φ2 ∈ C∞c , andm ∈ N such that n /∈ supp(φ1)∪supp(φ2)
for n > m. By the linearity of derivatives, T is also linear:

T (α1φ1 + α2φ2) =
∞∑
n=1

(α1φ1 + α2φ2)
(n)(n)

=

m∑
n=1

(α1φ1 + α2φ2)
(n)(n)

= α1

m∑
n=1

φ
(n)
1 (n) + α2

m∑
n=1

φ
(n)
2 (n)

= α1T (φ1) + α2T (φ2)

T is continuous: Assume that φj −→ φ in C∞c , and m ∈ N such that

n > m =⇒ n /∈ K ⊃
⋃
j∈N

supp(φj)

Then, T is continuous:

lim
j→∞

T (φj − φ) = lim
j→∞

[
m∑
n=1

(φj − φ)(n)(n)

]
= 0

Thus, we have finally proven that T ∈ D′ is a distribution.

8 Let f(x) = ln |x|, and Tf is the associated distribution. We let φ ∈ C∞c and integrate
by parts to find the derivative (Tf )

′:

〈(Tf )′, φ〉 = −
∫ ∞
−∞

ln |x|φ′(x) dx

= − lim
ε→0

[∫ −ε
−∞

ln |x|φ′(x) dx+

∫ ∞
ε

ln |x|φ′(x) dx
]

= − lim
ε→0

[φ(−ε)− φ(ε)] ln |ε|︸ ︷︷ ︸
= 0

+ lim
ε→0

[∫ −ε
−∞

φ(x)

x
dx+

∫ ∞
ε

φ(x)

x
dx

]

= lim
ε→0

∫
|x|>ε

φ(x)

x
dx

=

〈
PV

(
1

x

)
, φ

〉
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where PV is an abbreviation of the Cauchy Principal Value. The first term vanished
because of the Mean Value Theorem:

φ(−ε)− φ(ε) ≤ 2ε‖φ′‖∞
lim
ε→0

ε ln(ε) = 0

Thus, the derivative of ln |x|, in the sense of distributions, is

PV

(
1

x

)
(9)
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