

MA8105 Nonlinear PDEs and Sobolev spaces Spring 2019

Exercise set 4

1 Holden Ex 1 p 52.

- 2 Prove that $T \in D'$ continuous iff $T \in D'$ continuous at 0.
- 3 Prove that D' is a vector space. I.e. prove that it is closed under addition and scalar multiplication.
- 4 Ex 3 p 52 in Holden: Prove that for a regular distribution, $T_f = 0$ iff f = 0 a.e. $(f \in L^1_{loc})$.
- **5** Prove that $T_3 = \sum_{n=1}^{\infty} \delta_{\frac{1}{n}}$ belongs to D'(0,1). (Note that it does *not* belong to $D'(\mathbb{R})$).
- **6** Prove that $\partial^{\alpha}T \in D'$ for any $T \in D'$. *Hint:* Verify that is it well-defined, linear, and continuous.
- 7 Prove that $T(\phi) = \sum_{n=1}^{\infty} \phi^{(n)}(n)$ defines a distribution on \mathbb{R} .
- 8 Holden Ex 5 p 52, first derivative only.