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For S,T € D', both compactly supported, we define CsT(¢) = T (S, * ¢). Here,
So(¢) = S(¢y) for ¢ € C*. Then CgT € D':

-well defined: We note that S, x ¢ € C2° and T is well defined.
-linearity: Follows from the linearity (bilinearity) of the convolution and that of 7.

-continuity: Suppose ¢, — ¢ in CZ°. Then S, * ¢, = S, *x ¢ in CZ°. Hence, since T’
is continuous:

CST(¢n) = T(Sa * an) - T(So * QS) = CST(¢)
Now we show that convolutions commute
CsTx1=CrS*vy inD.

for any ¢ € C2°. First, we need an associative property of the convolution between
functions and distributions.

Tx(px¢) = (T *¢)x¢.

To see this, we use the continuity and linearity of 1" and approximate the convolution
(in one dimension) of functions with a Riemann sum:

(T (¢x¥))(x) =T ((¢x 1)) =T (¢ x¥)(x —.))

=T | Jim K%:Ay o(z — iy — )P(iAy)Ay

= lim > (T ¢)(w — ily)p(idy)Ay
Y70 i<NAy

_ / (T % 6)(x — y)b(y)dy = (T % §) x ¥) (x).

We can now calculate

Cy(CsT () = CsT(¢ * thg) = T(So * (¢ x95))
=T((Sy * @) % hy) = CypT (S * ).
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Now, we use the fact that CyT is a regular distribution with “density” 7,7 (¢5),

Cy(CsT(8)) = / 72T (o) (o * §)(x)de
_ / te (So(60)) 7T (1)d

— / roS(G) Ty * o) (@)da = Cp, S(Ty *105)

= S5((Ts * o) * )
STy * (Yo * $))
S(T5 (¢ ¥o))
S(To * ¢) * o)
Cy (C75(9)) -

Here, we used the associative property of convolution between functions and distri-
butions, and the commutative property of convolution with functions. Hence, for
any ¢ € Cg°,

CsT 1 = CpS * 1.
Now take ¢ € C° with [ ¢ =1 and put ¢, (z) = n%)(nx). Then

CoT * 1y, = CsT
CTS * wn — CTS

in D’. We see that

CsT = lim CsT x v, = lim CpS * 1, = CrS.
n—oo n—oo

Take ¢ € C2°. We may assume
supp ¢ C B(0,7).

Then

Ty =Ty, S/||< [f (@) = fu(2)||o(x)|dr < ||¢>|oo/ |f (@) = fulz)|de — 0

|z|<r

as n — oo. This shows that f, — f in D’.

We want to show that

x .
On = n(ﬁ)(wn *xT)—=T inD
when 7,19 € C2°, knowing that the result is true if 7 is replaced by 1. Take ¢ € Cg°.
Again, we may assume

supp ¢ C B(0, 7).
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Take n large so that n(£) = 1 in B(0,7). Then, for large n,
x
Ty = [ 1w e D@0 = [ @ e D@ -1

in D' since (¢, xT) — T.

Using integration by parts,

0;T(¢) = lim [ Oytpn(x)p(x)dx

n—oo

= tin (6@l = [ vnwoiotis)

n—oo

= — lim [ Yn(2)di(x)dx = —T(8;0),

n—oo

the boundary term is zero since ¥,,¢ € CZ°. The last equality follows by the
definition of T. If ¢, n, — T in D’ with ¢, n, € C° then

lim [ Opn(x)p(x)dx = — lim | ¢, (2)0;¢(x)dx = —=T(0;¢)

n—oo n—oo
. nlin;o N (2)0ip(x)dx = nh%n;o / Oinn(z)p(x)dx

x: Y, N, — T in D’. The definition is therefore independent on the choice of the
approximating sequence.

we LL (R):

1 1
/ e lrldy = 2/ —e Tdr =1 < oo.
L2 0 2

(In fact, u € L'(R)).
First note that

when z # 0. Further, note that u is not a C! function on any interval containing
z=0:

1 1
l' / = — — 1. / = — 1
Jim w'(z) ,  m wi(@) =g (1)

Using integration by parts, we find for any € > 0,

/| ) ) = w9 (9 ~ () + (o) v (=9~ + / o (2)(z)de.

|z|>e€
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The boundary terms at infinity gives zero contribution since ¢ is compactly sup-
ported. Hence

/| ) (0 @) e = [ o) (ule) ) e

|z|>e
+ [u(€)(€) — u(—e)¢/'(—e)]
+ [/ (—€)g(—e) — ' (€)d(e)]

The first term is zero for any € > 0, since u solves the equation when |z| > e. The
second term goes to zero as € — 0 since u is continuous in R. For the last term we
use equation (1)

In total,

lim [ u(z) (8(x) — ¢"(2)) dz = 9(0).

e—0 |z|>e

which shows that u is a fundamental solution of L = 1 — 2.

@ We solve
T" —2T"=¢§" inD'.
First, let V =T" — 2T — §'. We see that V' =0 in D’:
V/(¢) = —V(¢) = T(¢) — 21(¢) — §/(¢/) = T"() — 2T(9) — 8"() = 0
for any ¢ € C2°. Hence, V is a constant in D" and
T'—2T =§ + K.

Since the equation is linear, we may first solve 7" — 2T = K, then solve T" — 2T = ¢’
and add the solutions. Using an integrating factor e~2!, the solution of the first
equation is 1" = —% + Kye?!. For the second equation, let U = e~ 2T. Then

U'(¢) = =U(¢') = =T(e *¢) = =T ((e *'¢)' + 2¢~*'¢)
= T'(e %) — 2T (e %) = &' (e 29).

Here, the definition of derivative, the equation and the linearity of T" was used. Here,
§'(e79) = —0((e79)) = —0(e™*¢' —2¢7%¢) = —¢'(0) + 2¢(0) = §'($) +25(¢).
Let W =6 4+ 2H, where H is the Heaviside step function. Then

(U-W) =0 inD.

So U = W pluss a constant in D’. We can now invert 7' = e?'U to find the solution
of the second equation. In total we have

T =(6+2H)e* + Ky + Koe® = § + 2He* + K| + Kot
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In the last equality we used the fact that (5e?)(¢) = §(¢). In terms of test functions,

T(¢) = ¢(0) +2 / H(t)e*o(t)dt + K, / B(t)dt + Ko / e2o(t)dt.

One can check that this solves T"(¢) — 2T"(¢) = ¢”(0). Here, we only check that
T =0+ 2He* solves T — 2T = ¢’ in D":

7(6) = 6(0) +2 [ HO)* o0y,

T'(6) = ~T(¢) = —¢'(0) — 2 /0 T (1)t
=§'(¢) — 2 [e*p(t)] -, +4 /0 eXo(t)dt
= '(¢) +26(0) + 4 / H(t)e* p(t)dt.
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