

MA8105 Spring 2019

Solutions to exercise set 7

1 Define the cut-off function ϕ_j and show that $||f\phi_j||_p \le ||f\phi_j||_p$, $||f-f\phi_j||_p \to 0$, $p \in [1, \infty)$.

Define the function ϕ to be 1 on B(0,1) and 0 outside of B(0,2) as in Exercise 0. Define the cutoff-function $\phi_j(x) = \phi(\frac{x}{j})$ and note, that ϕ_j equals 1 on B(0,j), and vanishes outside of B(0,2j).

Since $\phi_j(x) \leq 1 \ \forall x \in \mathbb{R}^d$, for any $f \in L^p$ we have

$$\|f\phi_j\|_p^p = \int_{\mathbb{R}^d} |f(x)\phi_j(x)|^p dx = \int_{\mathbb{R}^d} |f(x)|^p |\phi_j(x)|^p dx \le \int_{\mathbb{R}^d} |f(x)|^p dx = \|f\|_p^p.$$

Since $f\chi_{B(0,j)} = f$ on B(0,j), it follows that $f(1 - \chi_{B(0,j)}) \to 0$ a.e. and $|f(1 - \chi_{B(0,j)})| \leq |f|$. So we can apply Lebesgue's dominated convergence theorem to obtain:

$$||f - f\phi_j||_p^p = \int_{||x|| > j} |f(x)(1 - \phi_j(x))|^p dx \to 0.$$

The L^{∞} case

For $f \in L^{\infty}$ we have, $|f(x)\phi_j(x)| \leq |f(x)|$, so the following inequality also holds:

$$\|f\phi_j\|_{\infty} \le \|f\|_{\infty}.$$

The function f(x) = 1 is an L^{∞} function. We have $f(x)\phi_j(x) = 0$ for all st all x with ||x|| > 2j. Therefore

$$\|f - f\phi_j\|_{\infty} \ge 1$$

for all j, since $\lambda(\mathbb{R}^d \setminus B(0, 2j)) = \infty$. So we have no L^{∞} convergence.

2 Let $\mathscr{F} \subseteq L^p(\mathbb{R}^d)$, $p \in [1, \infty)$, satisfy

- 1. $\sup_{f \in \mathscr{F}} \|f\|_p < \infty$
- **2.** $\forall \epsilon > 0 \ \exists \delta > 0 : \|y\| < \delta \Rightarrow \sup_{f \in \mathscr{F}} \|f \tau_y f\|_p < \epsilon.$

Then $\{f|_{\Omega}|f \in \mathscr{F}\}$ is totally bounded in $L^p(\Omega)$ for a bounded set Ω . Proof:

Let R > 0, such that $\Omega \subseteq B(0, R)$. Define $\hat{\mathscr{F}} = \{f\phi | f \in \mathscr{F}\}\)$, where ϕ is a cutoff function, which is 1 on Ω and vanisches outside of B(0, 2R). Then

1. $\hat{\mathscr{F}}$ is equibounded:

 $\sup_{\hat{f}\in\hat{\mathscr{F}}} \|\hat{f}\|_p \leq \sup_{f\in\mathscr{F}} \|f\|_p < \infty \text{ by assumption and Exercise 1.}$

2. $\hat{\mathscr{F}}$ is equicontinuous:

 ϕ is uniformely continuous as it is compactly supported and continuous. So $\forall \epsilon > 0 \ \exists \hat{\delta} > 0$, such that $|y| < \hat{\delta} \Rightarrow |\phi(x) - \phi(x+y)| < \epsilon$. Then for a.e. $|y| < \hat{\delta}$,

$$\begin{aligned} |\hat{f}(x) - \tau_y \hat{f}(x)| &= |f(x)\phi(x) - f(x+y)\phi(x+y)| \\ &\leq |f(x)||\phi(x) - \phi(x+y)| + |f(x) - f(x+y)||\phi(x+y)| \\ &\leq \epsilon |f(x)| + |f(x) - \tau_y f(x)|. \end{aligned}$$

Consequently: $\forall \epsilon > 0 \ \exists \delta > 0$:

 $|y| < \min\{\delta, \hat{\delta}\} \Rightarrow \sup_{\hat{f} \in \hat{\mathscr{F}}} \|\hat{f} - \tau_y \hat{f}\|_p < (1 + \sup_{\hat{f} \in \hat{\mathscr{F}}} \|f\|_p)\epsilon.$

3. $\hat{\mathscr{F}}$ is tight: $\forall \hat{f} \in \hat{\mathscr{F}} : \int_{\|x\| > 2R} |\hat{f}(x)|^p dx = 0$ by the definition of ϕ .

The family $\hat{\mathscr{F}}$ fullfils all prerequisites of the Kolmogorov-Riesz Theorem. Therefore $\hat{\mathscr{F}}$ is totally bounded in $L^p(\mathbb{R}^d)$.

Now, show, that the restriction to $L^p(\Omega)$ of an ϵ -net for $\hat{\mathscr{F}}$ is also an ϵ -net for $\{f|_{\Omega} \mid f \in \mathscr{F}\}$ in $L^p(\Omega)$.

Let $f \in \mathscr{F}$ and $\{\hat{f}_j\}_{j=1,\dots,N}$ be a ϵ -net for $\hat{\mathscr{F}}$.

Then $\phi f \in \hat{\mathscr{F}}, \exists k \in \{1, \dots, N\} : \|\phi f - \hat{f}_k\|_p \le \epsilon$, and

$$\|f|_{\Omega} - \hat{f}_k|_{\Omega}\|_{L^p(\Omega)}^p = \int_{\Omega} |f(x) - \hat{f}_k(x)|^p dx \le \|\phi f - \phi \hat{f}_k\|_p^p = \|\phi f - \hat{f}_k\|_p^p \le \epsilon^p.$$

Consequently $\{f|_{\Omega} \mid f \in \mathscr{F}\}$ is totally bounded in $L^{p}(\Omega)$.

3 Mass escaping to infinity: Let $f_k(x) = \chi_{[k,k+1]}(x)$.

a)Show that $f_k \to 0$ pointwise, but that $\{f_k\}_k$ does not converge in $L^1(\mathbb{R})$ nor in measure.

For all $x \in \mathbb{R}$, there exists a $R \in \mathbb{N}$, such that R > x. For $\forall k > R$, we have $f_k(x) = 0$, so $\{f_k\}$ converges pointwise to 0.

Let's have a look at the L^1 norm of the f_k :

$$||f_k||_1 = \int_{\mathbb{R}^d} |f_k(x)| dx = \int_k^{k+1} 1 dx = 1,$$

so $\{f_k\}_k$ can not converge in norm to 0.

Show that $\{f_k\}_k$ does not converge in measure to 0:

$$\lambda(\{x \in \mathbb{R} | |f_k(x)| > \frac{1}{2}\}) = \lambda([k, k+1]) = 1,$$

and therefore $\exists \epsilon > 0 : \lim_{k \to \infty} \lambda(\{x \in \mathbb{R} | |f_k(x)| > \epsilon\}) \neq 0.$

b) Show that $f_k \to 0$ in $L^1_{loc}(\mathbb{R})$ and locally in measure.

Let $K \subseteq \mathbb{R}$ be a compact set. By the Heine-Borel theorem K is bounded. So for $k > \sup\{|x| \mid x \in K\}$, we have $f_k(x) = 0 \ \forall x \in K$, and therefore $||f_k||_{L^1(K)} = 0$. So $\{f_k\}_k$ converges to 0 in $L^1_{loc}(\mathbb{R})$.

For a sequence f_k to converge locally in measure to f it has to fulfill:

$$\forall \epsilon > 0 : \lim_{k \to \infty} \mu(\{x \in K | |f_k(x) - f(x)| > \epsilon\}) = 0$$

for all compact sets K.

Let $\epsilon > 0$ and $K \subseteq \mathbb{R}$ an arbitrary compact set.

$$l_{k,\epsilon} := \lambda(\{x \in K | |f_k(x)| > \epsilon\}) \le \lambda(K \cap [k, k+1])$$

As each compact set in \mathbb{R} is bounded, $K \cap [k, k+1] = \emptyset$ for $k > \sup\{|x| \mid x \in K\}$, hence $\lim_{k\to\infty} l_{k,\epsilon} = 0$. Therefore $\{f_k\}_k$ converges locally in measure to 0.

c) Show, that $\{f_k\}_k$ is equibounded and -continuous in L^1 . Is it tight? As noted earlier $||f_k||_1 = 1$, so $\{f_k\}_k$ is obviously equibounded. Equicontinuous: Let $-1 \le y < 0$:

$$||f_k(x) - f_k(x+y)||_1 = \int_k^{k-y} 1dx + \int_{k+1}^{k+1-y} 1dx = 2|y| \quad \forall k$$

For y < -1:

$$||f_k(x) - f_k(x+y)||_1 = \int_k^{k+1} 1dx + \int_{k-y}^{k+1-y} 1dx = 2 \quad \forall k$$

Doing the same for positive y, we get:

$$||f_k(x) - f_k(x+y)||_1 \le 2|y|$$

so the $\{f_k\}_k$ is equicontinuous when choosing $\delta = \frac{\epsilon}{2}$.

 $\{f_k\}_k$ is not tight: For any R > 0, there exists a $k \in \mathbb{N}$ (take k > R), such that $\int_{|x|>R} f_k(x) dx = \int_k^{k+1} 1 dx = 1$.

As we have seen earlier, the norm of the f_k is constant, so there can not be a subsequence converging to 0. So this sequence is an example, that the sequence being tight is a crucial prerequisite for the Kolmogorov-Riesz theorem.

Also $\lambda(\{x \in \mathbb{R} | |f_k(x)| > \frac{1}{2}\})$ is constant, so there can not be a subsequence converging to 0 in measure. But there is a subsequence (the sequence itself) converging to 0 locally in L^1 and locally in measure.

4 Show that $\mathcal{F} := \{f(x) = \chi_{[a,b]}(x)| - 1 < a < b < 1\}$ is totally bounded in L^p for $p \in [1,\infty)$.

We use Kolmogorov-Riesz to show that \mathcal{F} is totally bounded.

 \mathcal{F} is equibounded: $\|\chi_{[a,b]}\|_p = \left(\int_a^b 1dx\right)^{\frac{1}{p}} = (b-a)^{\frac{1}{p}} \le 2^{\frac{1}{p}}.$

 ${\mathcal F}$ is equicontinuous: As in Excercise 3, we have

$$\int_{\mathbb{R}^d} |\chi_{[a,b]}(x) - \chi_{[a,b]}(x+y)|^p dx \le 2|y|.$$

 \mathcal{F} is tight: $\int_{|x|>1} \chi_{[a,b]} dx = 0,$

Therfore all prerequisites of Kolmogorov-Riesz are fulfilled and we can conclude, that \mathcal{F} is totally bounded.

5 Let $p \in [1, \infty)$ and $F \subseteq L^{\infty}(\Omega)$ where $\Omega \subseteq \mathbb{R}^d$ is open, bounded and measurable. Assume (C1) $\sup_f ||f||_{\infty} < \infty$ and (C2) $\sup_f ||f - \tau_y f||_{L^p((\Omega - y) \cap \Omega)} \to 0$ as $y \to 0$. Then F is totally bounded in $L^p(\Omega)$.

Define $\hat{f}(x) = \begin{cases} f(x) & x \in \Omega \\ 0 & x \notin \Omega \end{cases}$. Show that, $\hat{F} = \{\hat{f} : f \in F\}$ fulfils the assumption of Kolmogorov-Riesz in $L^p(\mathbb{R}^d)$. Afterwards show, that \hat{F} totally bounded in $L^p(\mathbb{R}^d)$ implies F totally bounded in $L^p(\Omega)$:

 $\hat{F} \subseteq L^p(\mathbb{R}^d)$:

Proof:

Since Ω is bounded and measurable, we know, that Ω has finite measure. So we can conclude:

$$\int_{\mathbb{R}^d} |\hat{f}(x)|^p dx = \int_{\Omega} |f(x)|^p dx \le \int_{\Omega} \|f\|_{\infty}^p dx = \lambda(\Omega) \|f\|_{\infty}^p < \infty,$$

which holds for all $\hat{f} \in \hat{F}$.

\hat{f} is equibounded in $L^p(\mathbb{R}^d)$:

Let $M = \sup_{f \in F} \|f\|_{\infty}$. We know from (C1), that $M < \infty$.

$$\sup_{\hat{f}\in\hat{F}} \|\hat{f}\|_{p} = \sup_{\hat{f}\in\hat{F}} \left(\int_{\mathbb{R}^{d}} |\hat{f}(x)|^{p} dx \right)^{\frac{1}{p}}$$
$$= \sup_{f\in F} \left(\int_{\Omega} |f(x)|^{p} dx \right)^{\frac{1}{p}}$$
$$\leq \sup_{f\in F} (\lambda(\Omega) \|f\|_{\infty}^{p})^{\frac{1}{p}}$$
$$\leq \lambda(\Omega)^{\frac{1}{p}} M < \infty$$

 \hat{F} is equicontinuous in $L^p(\mathbb{R}^d)$:

For all $\hat{f} \in \hat{F}$, we have:

$$\begin{split} \|\hat{f} - \tau_y \hat{f}\|_p^p &= \int_{\mathbb{R}^d} |\hat{f}(x) - \hat{f}(x+y)|^p dx \\ &= \int_{\Omega \cup (\Omega - y)} |f(x) - f(x+y)|^p dx \\ &= \int_{\Omega \cap (\Omega - y)} (\dots) dx + \int_{\Omega \setminus (\Omega - y)} |f(x)|^p dx + \int_{(\Omega - y) \setminus \Omega} |f(x+y)|^p dx \\ &\leq \|f - \tau_y f\|_{L^p(\Omega \cap (\Omega - y))}^p + \lambda(\Omega \setminus (\Omega - y)) \|f\|_{\infty}^p + \lambda((\Omega - y) \setminus \Omega) \|f\|_{\infty}^p \end{split}$$

By (C2) we have

$$\sup_{f \in F} \|f - \tau_y f\|_{L^p(\Omega \cap (\Omega - y))}^p \to 0$$

 $\text{ as } y \to 0.$

Also, we have

$$\lambda(\Omega \setminus (\Omega-y)), \lambda((\Omega-y) \setminus \Omega) \to 0$$

as $y \to 0$:

First note, that $\lambda(\Omega \setminus (\Omega - y)) = \int_{\mathbb{R}^d} \chi_{\Omega \setminus (\Omega - y)}(x) dx$. We use Lebesgue's dominated convergence theorem to show, that this integral goes to zero as y goes to 0.

 $\chi_{\Omega \setminus (\Omega - y)}(x) \leq \chi_{\Omega}(x)$, which is a integrable function, since $\Omega \setminus (\Omega - y) \subseteq \Omega$.

Let $\{y_n\}_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d converging to 0. Then for every $x \in \mathbb{R}^d \setminus \partial\Omega$, there exists an $N \in \mathbb{N}$, such that, $\chi_{\Omega \setminus (\Omega - y_n)}(x) = 0 \ \forall n > N$. To accomplish this, choose N, such that $\|y_n\| < dist(x, \partial\Omega) \ \forall n > N$.

So $\chi_{\Omega \setminus (\Omega - y_n)} \to 0$ pointwise for all $x \in \mathbb{R}^d$. We can apply the dominated convergence theorem to obtain:

$$\lim_{n \to \infty} \lambda(\Omega \setminus (\Omega - y_n)) = \lim_{n \to \infty} \int \chi_{\Omega \setminus (\Omega - y_n)}(x) dx = \int \lim_{n \to \infty} \chi_{\Omega \setminus (\Omega - y_n)}(x) dx = 0,$$

and therefore $\lambda(\Omega \setminus (\Omega - y)) \to 0$ as $y \to 0$. A similar argument leads to $\lambda((\Omega - y) \setminus \Omega) \to 0$. So we can conclude:

$$\begin{split} \sup_{\hat{f}\in\hat{F}} &\|\hat{f}-\tau_y\hat{f}\|_p^p \\ \leq \sup_{f\in F} \left(\|f-\tau_yf\|_{L^p(\Omega\cap(\Omega-y))}^p + \lambda(\Omega\setminus(\Omega-y))\|f\|_{\infty}^p + \lambda((\Omega-y)\setminus\Omega)\|f\|_{\infty}^p\right) \\ = \sup_{f\in F} \|f-\tau_yf\|_{L^p(\Omega\cap(\Omega-y))}^p + \sup_{f\in F} \lambda(\Omega\setminus(\Omega-y))\|f\|_{\infty}^p + \sup_{f\in F} \lambda((\Omega-y)\setminus\Omega)\|f\|_{\infty}^p \\ = \sup_{f\in F} \|f-\tau_yf\|_{L^p(\Omega\cap(\Omega-y))}^p + \lambda(\Omega\setminus(\Omega-y))M^p + \lambda((\Omega-y)\setminus\Omega)M^p \\ \to 0 \end{split}$$

as $y \to 0$, which is a different statement for equicontinuity.

\hat{F} is tight in $L^p(\Omega)$:

As Ω is bounded, we can find an R > 0, such that $\Omega \subseteq B(0, R)$. Then $\hat{f}(x) = 0$ for all $x \notin B(0, R)$.

Consequently:

$$\int_{\|x\|>R} |\hat{f}(x)|^p dx = 0$$

for all $\hat{f} \in \hat{F}$.

\hat{F} is totally bounded in $L^p(\mathbb{R}^d)$:

As shown previously F fulfils all assumptions of Kolmogorov-Riesz, so we can conclude, that \hat{F} is totally bounded in $L^p(\mathbb{R}^d)$.

F is totally bounded in $L^p(\Omega)$:

Let $\{\hat{f}_i\}_{i=1,\dots N}$ be an ϵ -net for \hat{F} in $L^p(\mathbb{R}^d)$. We show, that $\{\hat{f}_i|_{\Omega}\}_{i=1,\dots N}$ is an ϵ -net for F in $L^p(\Omega)$.

Let $f \in F$ and $\hat{f} \in \hat{F}$, such that $\hat{f}|_{\Omega} = f$. As the \hat{f}_i form an ϵ -net, there is a $k \in \{1, \ldots, N\}$ with $\|\hat{f} - \hat{f}_k\|_p < \epsilon$. Then:

$$\|f - f_k\|_{L^p(\Omega)}^p = \int_{\Omega} |f(x) - f_k(x)|^p dx \le \int_{\mathbb{R}^d} |\hat{f}(x) - \hat{f}_k(x)|^p dx = \|\hat{f} - \hat{f}_k\|^p \le \epsilon^p.$$