

MA8105 Nonlinear PDEs and Sobolev spaces Spring 2019

Exercise set 7

1 Prove Lemma 20 from the lectures: Define the cut-off function ϕ_j and show that

 $||f\phi_j||_p \le ||f||_p, \quad ||f - f\phi_j||_p \to 0, \quad p \in [0,\infty).$

Explain also the L^{∞} -case.

2 Kolmogorov-Riesz 2, Theorem 27 in the lectures: L^p -equiboundedness and -equicontinuity of $\mathcal{F} \subset L^p$ implies total boundedness of the restriction of \mathcal{F} to a bounded set Ω .

Formulate the precise result and prove it using Kolmogorov-Riesz 1 (the result in whole space, Theorem 26 in the lectures).

Hint: See hints in class – multiply \mathcal{F} by a cut-off function which is 1 on Ω .

- **3** (Mass escaping to infinity) Let $f_k(x) = \chi_{[k,k+1]}(x)$.
 - **a)** Show that $f_k \to 0$ point wise, but $\{f_k\}_k$ does not converge in $L^1(\mathbb{R})$ or measure.
 - b) Show that $f_k \to 0$ in L^1_{loc} and locally in measure (only consider points in compact subsets of \mathbb{R} give a definition!).
 - c) Show that $\{f_k\}_k$ is equibounded and -continuous in L^1 . Is it tight? Prove that there is a convergent subsequence and explain what type of convergence we get.
- 4 Show that $\mathcal{F} := \left\{ \chi_{[a,b]}(x) : -1 < a < b < 1 \right\}$ is precompact in $L^p(\mathbb{R})$ for $p \in [1,\infty)$.
- **5** (Challenge) Let $p \in [1, \infty)$ and $\mathcal{F} \subset L^{\infty}(\Omega)$ where $\Omega \subset \mathbb{R}^d$ is bounded and open. Assume (C1) $\sup_f ||f||_{\infty} < \infty$ and (C2) $\sup_f ||f - \tau_y f||_{L^p((\Omega - y) \cap \Omega)} \to 0$ as $y \to 0$. Then \mathcal{F} precompact in $L^p(\Omega)$.

Hint: Extend functions to \mathbb{R}^d by 0 in Ω^c . Show that extension satisfies the conditions in the Kolmogorov-Riesz theorem (inspiration can be found in Exercise 4 ...).