

MA8105 Nonlinear PDEs and Sobolev spaces Spring 2019

Exercise set 8

1 Verify the claims in Remark 4.8 p 64 in Holden.

2 Give the details to the proof of Theorem 4.9 p 64 in Holden.

Hint: 1. Show $\int f_n \phi \to \int f \phi$ for all simple functions ϕ . 2. Use the fact that simple functions are dense in L^q for $q \in [1, \infty)$ to conclude.

- 3 (Holden Ex 9 p 93) Show that $f_n = n\chi_{(0,\frac{1}{n})}$ is not uniformly integrable on X = (0,1) in two ways:
 - (a) Using directly the definition, and

(b) Showing that the sequence converge to δ_0 in distributions – and hence has no convergence subsequence in $L^1(0,1)$ – and then conclude by Dunford-Pettis.

4 (See also Holden Ex 10 p 93) Let $f_n(x) = g(x+n)$ for some $0 \neq g \in L^p(\mathbb{R}), p \in (1, \infty)$. Show that $f_n \to 0$ weakly in $L^p(\mathbb{R})$.

Hint: Show convergence of means on intervals.

5 (Holden Ex 11 p 93) Show the p = 1 case in Example 4.25 (i) p 72 in Holden.