

1 Show and interpret $f_n \to f$ in $L^1 \implies f_n \to f$ in \mathcal{M} .

Let $f_n, f \in L^1(X), d\mu_n = f_n dx, d\mu = f dx$, and $f_n \to f$ in L^1 .

Recall that $\mu = \mu^+ - \mu^-$, where $\mu^+(E) = \sup \to_{A \subset E} \mu(A)$ and $\mu^-(E) = -\inf_{A \subset E} \mu(A)$. Similarly, $f = f^+ - f^-$, where $f^+(x) = \max(f(x), 0)$ and $f^-(x) = -\min(f(x), 0)$. Observe that if $d\mu = f dx$, then $d\mu^+ = f^+ d\mu$ and $d\mu^- = f^- d\mu$.

Then: $\|\mu_n - \mu\| = |\mu_n - \mu|(X) = ((\mu_n - \mu)^+ + (\mu_n - \mu)^-)(X) = \int_X d((\mu_n - \mu)^+ + (\mu_n - \mu)^-) = \int_X (f_n - f)^+ + (f_n - f)^- dx = \int_X |f_n - f| dx = \|f_n - f\|_L^1 \to 0.$

Interpretation: if a sequence of L^1 functions converges, then so do the measures associated with the functions.

$\begin{array}{c} \hline 2 \end{array} \text{Show Thm 74} \implies \text{Thm 75} \end{array}$

Assumptions of Thm 75 implies there exists μ_{n_k} , μ Radon measures so that

$$\int g d\mu_{n_k} \to \int g d\mu \quad \forall g \in C_c.$$
(*)

Fix $f \in C_0$. Let $\epsilon > 0$ and $M = \max(\mu(X), \sup_k \mu_k(X)) < \infty$. Recall that C_0 is the closure of C_c wrt. $\|\cdot\|_{\infty}$, so $\exists f_n \in C_c$ st. $\|f - f_n\|_{\infty} \leq \frac{\epsilon}{M}$. By (*), there is K so that $k \geq K$ implies $|\int f_n d(\mu_{n_k} - \mu)| \leq \epsilon$.

 $\begin{array}{l} \text{Then:} \ |\int f d\mu - \int f d\mu_{n_k}| \leq |\int f d\mu - \int f_n d\mu| + |\int f_n d\mu - \int f_n d\mu_{n_k}| + |\int f_n d\mu_{n_k} - \int f d\mu_{n_k}| \leq \|f - f_n\|_{\infty} \mu(X) + \epsilon + \|f_n - f\|_{\infty} \sup_n \mu_n(X) \leq 3\epsilon \end{array}$

3 (a) \implies (b) :

First, we assume that $f_n \to f$ in $W^{k,p}(K^{\circ})$ for all $K \subset \Omega$. Let $\varphi \in C_c^{\infty}(\Omega)$ and take $K \subset \Omega$ such that $\operatorname{supp}(\varphi) \subset K^{\circ}$. There is a C > 0 such that

$$\|\varphi\|_{L^{\infty}(\Omega)}, \|\partial^{\alpha}\varphi\|_{L^{\infty}(\Omega)} \leq C \quad , \quad |\alpha| = 1.$$

By Hölder's inequality, we obtain

$$\|f\varphi\|_{L^{p}(\Omega)}^{p} = \|f^{p}\varphi^{p}\|_{L^{1}(\Omega)} \le \|f^{p}\|_{L^{1}(K^{\circ})}\|\varphi^{p}\|_{L^{\infty}(K^{\circ})} = C^{p}\|f\|_{L^{p}(K)}^{p}.$$
 (1)

Applying this inequality above to the $W^{k,p}$ -norm, we get

$$\begin{split} \|f_{n}\varphi - f\varphi\|_{W^{1,p}(\Omega)}^{p} \\ &= \sum_{|\alpha| \le 1} \|\partial^{\alpha} [(f_{n} - f)\varphi]\|_{L^{p}(\Omega)}^{p} \\ &= \|(f_{n} - f)\varphi\|_{L^{p}(\Omega)}^{p} + \sum_{|\alpha| = 1} \left(\|\varphi\partial^{\alpha}(f_{n} - f)\|_{L^{p}(\Omega)}^{p} + \|(f_{n} - f)\partial^{\alpha}\varphi\|_{L^{p}(\Omega)}^{p} \right) \\ &\le C^{p} \|(f_{n} - f)\|_{L^{p}(K^{\circ})}^{p} + \sum_{|\alpha| = 1} \left(C^{p} \|\partial^{\alpha}(f_{n} - f)\|_{L^{p}(K^{\circ})}^{p} + C^{p} \|(f_{n} - f)\|_{L^{p}(K^{\circ})}^{p} \right) \\ &= (1 + d)C^{p} \|(f_{n} - f)\|_{L^{p}(K^{\circ})}^{p} + C^{p} |(f_{n} - f)|_{W^{1,p}(K^{\circ})}^{p} \\ &\le (1 + d)C^{p} \|(f_{n} - f)\|_{W^{1,p}(K^{\circ})}^{p} \end{split}$$

Thus, we have shown that $||f_n \varphi - f \varphi||_{W^{1,p}(\Omega)} \leq \overline{C} ||(f_n - f)||_{W^{1,p}(K^\circ)}$. If $n \to \infty$, then $||f_n - f||_{W^{1,p}(K^\circ)} \to 0$. This implies that $f_n \varphi \to f \varphi$ in $W^{k,p}(\Omega)$ for all $\varphi \in C_c^\infty(\Omega)$.

 $(\mathbf{b}) \implies (\mathbf{a}):$

Now, we assume that $f_n \varphi \to f \varphi$ in $W^{k,p}(\Omega)$, which means that $||f_n \varphi - f \varphi||_{W^{k,p}} \to 0$. Let K be a set such that $(K^\circ) \subset \Omega$ and take a cut-off function $\varphi \in C_c^\infty$ such that $0 \leq \varphi \leq 1$ and $\varphi|_K \equiv 1$. Since \mathbb{R}^d has bigger measure than K° , we have that

$$||f_n - f||_{W^{1,p}(K^\circ)} = ||f_n\varphi - f\varphi||_{W^{1,p}(K^\circ)} \le ||f_n\varphi - f\varphi||_{W^{1,p}(\mathbb{R}^d)}.$$

This holds because $\varphi|_K \equiv 1$. Thus, $||f_n - f||_{W^{1,p}(K^\circ)}$ is bounded above by a quantity which tends to zero as $n \to \infty$, and $f_n \to f$ in $W^{k,p}(K^\circ)$.

4 1) $\|\cdot\|_{W^{k,p}}$ is a norm on $W^{k,p}$:

• Triangle inequality holds:

Let $u,v\in W^{k,p}$ be arbitrary functions. By applying Minkowski's inequalities, both for integrals and sums, we get

$$\|u+v\|_{W^{k,p}} = \left(\sum_{|\alpha| \le k} \|\partial^{\alpha}(u+v)\|_{L^{p}}^{p}\right)^{1/p}$$

= $\|(\|\partial^{\alpha}(u+v)\|_{L^{p}})_{|\alpha| \le k}\|_{l^{p}}$
 $\le \|(\|\partial^{\alpha}u\|_{L^{p}} + \|\partial^{\alpha}v\|_{L^{p}})_{|\alpha| \le k}\|_{l^{p}}$
 $\le \|(\|\partial^{\alpha}u\|_{L^{p}})_{|\alpha| \le k}\|_{l^{p}} + \|(\|\partial^{\alpha}v\|_{L^{p}})_{|\alpha| \le k}\|_{l^{p}}$
 $\le \|u\|_{W^{k,p}} + \|v\|_{W^{k,p}}$

• Homogeneous norm:

Let $\lambda \in \mathbb{R}$ and $u \in W^{k,p}$ be arbitrary. Then

$$\|\lambda u\|_{W^{k,p}} = \left(\sum_{|\alpha| \le k} \|\partial^{\alpha}(\lambda u)\|_{L^{p}}^{p}\right)^{1/p} = \left(\sum_{|\alpha| \le k} |\lambda|^{p} \|\partial^{\alpha} u\|_{L^{p}}^{p}\right)^{1/p} = |\lambda| \|u\|_{W^{k,p}}$$

• Zero element is unique:

If u = 0, then $\|\partial^{\alpha} u\|_{L^{p}} = 0$ for all $|\alpha| \leq k$. Now, we just assume that $\|u\|_{W^{k,p}} = 0$. If $u \neq 0$, then $\|u\|_{L^{p}} > 0$, and since this quantity is a part of the $W^{k,p}$ -norm, it will make $\|u\|_{W^{k,p}} > 0$, which is a contradiction. Thus, the zero element is unique.

2) $W^{k,p}$ is a vector space:

Assume that $u, v \in W^{k,p}$ and $a, b \in \mathbb{R}$. Then, by the properties of the norm,

$$||au + bv||_{W^{k,p}} \le |a|||u||_{W^{k,p}} + |b|||v||_{W^{k,p}}$$

Thus, $au + bv \in W^{k,p}$, and $W^{k,p}$ is closed under addition and scalar multiplication, i.e. $W^{k,p}$ a vector space.

3) $W^{k,p}$ is a Banach space:

If $\{u_n\}_{n=1}^{\infty}$ is an arbitrary Cauchy sequence in $W^{k,p}$, so does $\{\partial^{\alpha}u_n\}_{n=1}^{\infty}$ in L^p for all $|\alpha| \leq k$, since ∂^{α} is linear. Since L^p is complete, there are u and u_{α} such that

$$\begin{array}{ccc} n \rightarrow \infty & \Longrightarrow & \begin{cases} u_n \rightarrow u & \text{ in } L^p \\ \partial^{\alpha} u_n \rightarrow u_{\alpha} & \text{ in } L^p \end{cases}$$

Since $L^p \subset L^p_{\text{loc}}$, u_n defines a distribution $T_{u_n} \in \mathcal{D}'$. If $\varphi \in \mathcal{D}$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$|T_{u_n}(\varphi) - T_u(\varphi)| \le \int |u_n - u||\varphi| \, dx \le ||u_n - u||_{L^p} ||\varphi||_{L^q}$$

Thus, $T_{u_n}\varphi \to T_u\varphi$ for all $\varphi \in \mathcal{D}'$. Similarly, we get

$$T_{u_{\alpha}}(\varphi) = \lim_{n \to \infty} T_{\partial^{\alpha} u_{n}}(\varphi) = \lim_{n \to \infty} (-1)^{|\alpha|} T_{u_{n}}(\partial^{\alpha} \varphi) = (-1)^{|\alpha|} T_{u}(\partial^{\alpha} \varphi)$$

Since $\varphi \in \mathcal{D}$, so is $\partial^{\alpha} \varphi$, and $u_{\alpha} = \partial^{\alpha} u$ in the distributional sense when $u \in W^{k,p}$. Since $||u_n - u||_{W^{k,p}} \to 0$, $W^{k,p}$ is a Banach space.

5 Let $f \in W^{m,p}(\Omega)$ and $\varphi \in C_b^m(\Omega)$ such that $\Omega \subset \mathbb{R}^d$. To derive the estimate, we use the product rule, Minkowski's inequality, Hölder's generalized inequality, and the continuous embedding $W^{m,p}(\Omega) \hookrightarrow L^p(\Omega)$:

$$\begin{split} \|f\varphi\|_{W^{m,p}}^{p} &= \sum_{|\alpha| \leq m} \|\partial^{\alpha}(f\varphi)\|_{L^{p}}^{p} \\ &= \sum_{|\alpha| \leq m} \left\|\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \left(\partial^{\alpha-\beta} f \partial^{\beta} \varphi\right)\right\|_{L^{p}}^{p} \\ &\leq \sum_{|\alpha| \leq m} \left(\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \|\partial^{\alpha-\beta} f \partial^{\beta} \varphi\|_{L^{p}}\right)^{p} \\ &\leq \sum_{|\alpha| \leq m} \left(\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \|\partial^{\alpha-\beta} f\|_{L^{p}} \|\partial^{\beta} \varphi\|_{L^{\infty}}\right)^{p} \\ &\leq \sum_{|\alpha| \leq m} \left(\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \|f\|_{W^{m,p}} \|\varphi\|_{W^{m,\infty}}\right)^{p} \\ &= \underbrace{\left[\sum_{|\alpha| \leq m} \left(\sum_{\beta \leq \alpha} \binom{\alpha}{\beta}\right)^{p}\right]}_{C^{p}} \|f\|_{W^{m,p}}^{p} \|\varphi\|_{W^{m,\infty}}^{p} \end{split}$$

If we take the p-root on both sides of the inequality, we obtain

$$\|f\varphi\|_{W^{m,p}} \le C \|\varphi\|_{W^{m,\infty}} \|f\|_{W^{m,p}}$$

$$\tag{2}$$