

MA8105 Nonlinear PDEs and Sobolev spaces Spring 2019

Exercise set 9

1 Show that $f_n \to f$ in L^1 implies $f_n \to f$ in \mathcal{M} . Explain how to interpret the latter convergence.

Prove that Thm 67 (compactness in (C_c)') in my notes (see 'Lectures' on the webpage) implies Thm 65 (compactness in (C₀)')). *Hint:* This is easy, approximate C₀ functions by C_c functions.
This material is partly taken from Folland: *Real Analysis* chp 7, partly from Holden.

3 Prove that the following two statements are equivalent:

(a) $f_n \to f$ in $W^{1,p}(K), \forall K \subset \Omega$ compact.

- **(b)** $f_n \phi \to f \phi$ in $W^{1,p}(\Omega), \forall \phi \in C_c^{\infty}(\Omega).$
- **4** Prove that $W^{m,p}(\Omega)$ is a Banach space.

Hint: Show 1) normed space and 2) completeness. Use the completeness of L^p .

5 Let $\phi \in C_b^m(\Omega)$ (all derivatives of order less than m are bounded, continuous) and $f \in W^{m,p}(\Omega)$, show that

$$\|\phi f\|_{m,p} \le C \|\phi\|_{m,\infty} \|f\|_{m,p}.$$

Hint: Product rule, induction.