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Problem 1

(a) Define the standard one-dimensional Brownian motion By starting at x = 0, and
compute E (B?) and Var (B?).

Let P be a partition of the interval [0,t] so that 0 =tg <t; < -+ <tp, =1t, Ap = tpy1 —
ty, and ABy = By, ,, — By,. Consider the process Y, defined by Y, = limp_o Y p (ABk)2
(limit in L? (Q2)).

(b) Show that Y; =t a.s. (e.g. by computing EY; and Y;).
Solution:

(a) The axioms:

(1) By is a Gaussian process for ¢ > 0, starting = 0,
(i1) EB, =0, (1)
(i1i) Cov (By, Bs) = min (s,1).

By applying the axioms and the formula for EB} in the table, we have
E (B?) = Var (B,) = t, (2)

Var (B?) = E (B2 —t)* = E (B! — 2tB? +12) = 3t — 2t x t + 1% = 2¢*. (3)

(b) We first observe that

E(Z (ABy) ) ZE (ABy)? ZAk_t (4)

for all partitions, and therefore, EY; = ¢t. Moreover, since AB; and AB; are independent
for k #£ 1,

Var (Z(ABk ) ZVar ((ABy)? 22A2

Hence VarY; = 0, and Y; is equal to ¢ a.s.



Alternatively, we could write, applying that independence implies orthogonality in L? (€):

> (ABp)*—t

P

2

=Y E((ABY* - Ay’
P

= 27} < 2max [Ay[ ¢ —— 0.
P

L2(Q)

Problem 2

Show that B2/t € V[0,T], T < oo, and state the expectation and variance of

B2
1=/ =tdB,. (6)
o ¢t
Solution:
The function B?/t is clearly F;-adapted (and [0, 7] x © measurable). Moreover,

322 2
AP (w) df = /3idt—3T<oo (7)

showing that BZ/t € V[0, T].

We have EI = 0 for all It6 Integrals, whereas Var I is equal to the integral in Eq. 7 by
the It6 Isometry.

Problem 3

Assume that the reqular (non-random) function 0; is in L?[0,T], and consider the one-
dimensional Itd process

t 02 t
Xo=— [ Zas+ / 6.dB., t € [0,T]. (8)
0 0

Let M; = exp X;.
(a) Compute the mean and variance of M, by observing that Y; = fo 0,dBs is Gaussian.

(b) Derive the stochastic differential equation for M, and explain why M, should be a
Martingale.

(c) Verify from the definition of a Martingale that M; is an L*(Q)-Martingale with
respect to F; (The filtration of the Brownian motion).

Solution:
(a) We first observe that EY; = 0 and VarY; = fo 62ds (I1td Isometry). Then, since

t Q2
M, = exp (—/ ?ds) X exp Yy, (9)
0

2



and using the formula in the list for e*:

L g2 1
EM; = exp <—/ —Sds) X exp <— Va,rYt) =1,
) 2
t 1 t
Var M; = EM? —1 = exp (—/ Hgds) exp (5 Var (2Yt)) —1=exp (/ ngs) -1
0 0

(10)
(b) We apply Itd’s Formula:
dM, = (exp X;) dX; + % (exp X;) (dX;)°
= M, (—%th + etdBt) + %Mtefdt = M,0,dB,. (11)
Hence,
M, — My = /0 ' MLO.dB.. (12)

The It6 integral is an Fi-martingale w.r.t. its upper limit, and so is therefore M; (in
addition, M, is also an martingale with respect to its own filtration).

(c)

1. Since 6, is a regular deterministic function, X; is clearly F;-measurable, and so is
therefore also M; = exp X;.

2. Since Var M, is finite, M; € L* (Q) C L' (Q).

3. For 0 <t < s <T we have:

s 2
E(M,|F)=E (exp (/ —%‘du + QudBu) ‘ ]—"t)
’ s 92
E (Mt exp (/ —E“du + QudBu) ‘ .7-})
sr 92

— M,. (13)

The last equalities follow since M, is F;-measurable, whereas exp fts {— %du + GUdBu}
is independent of F;.

Problem 4

Consider the stochastic process X; = log (B;), Xo=0 (By = 1). Write X; as an autonome
It6 diffusion. Does this differential equation satisfy the sufficient conditions for existence
of solutions on an interval (0,77



Solution:

Clearly, since nothing prevents B; from becoming negative, there will always be a fraction
of the paths of X; blowing up for a t € (0,71, regardless the size of T' > 0.

The equation for X; follows from It6’s Formula:

1 1 ax, x,
dX; = EtdBt - B—Edt = —e 2Nt dt + e dB;. (14)

For large negative values of X; (which may well occur), no bound like

7| < C'(1+a]) (15)
will work (B.. Thm. 5.2.1).
Problem 5
Solve the equation
dX, = —2tX,dt + ¢ B,dB;, Xg=1, t > 0. (16)

Solution:
We multiply through with A (¢) and replace h (t) dX; by d[h (t) X;] — B (t) Xidt:

dh(t) X)) — I (t) Xydt = —h () 26X, dt + h (t) e BydB,. (17)
The smart choice is clearly
h'(t) = 2th(t), (18)
with a solution A (t) = e’”. The equation is now reduced to
d <et2Xt) — B,dB, (19)
which may be integrated to
t
e’ X, = Xo + / B,dB,. (20)
0
The It6 integral is solvable by observing that with Y; = B2, we obtain from It&’s Formula
1
dY, = 2BidB; + §2dt, (21)
from which it follows that
! 1 ! B} ¢
BydB, == (Y, = Yy) — [ ds=—+- ——, 22
/ 500 =Y~ [ s = (22)
and finally, with Xy =1,
2 ! > 1
X, =e¢t (1 +/ Bsst) —e! (1 +5 (B} — t)) : (23)
0



Problem 6

(a) Dynkin’s Formula may be stated

E°F () = (o) + B [ Af(X)ds. (24)

0

Explain the terms in the formula and how it is applied for solving the equation Af = 0.

For (b) and (c) we assume known that the average first exit time for Brownian motion
1s finite for all bounded domains.

(b) Consider a domain in R? bounded by two concentric circles,
U={zeR* 0<r<|z|<R<oo}. (25)

A Brownian motion starts at x € U. Compute the expectation of the exit time 7{; and
the probabilities that the Brownian motion first exits through the inner and outer circle,
respectively (ETf is finite for all finite domains). What happens if we let R — co?

(c) Consider a Brownian motion in R™, n > 3, starting at x and let S be a sphere with

radius R > 0 not containing x. Compute the average of the first hitting time of the
sphere.

Solution

(a)
e 7 is a stopping time where we know that E*7 < oo at all x-s we need.

e X, is an Ito Diffusion, dX; = f; (X;) dt + o (X;) dB;, where  and o fulfill the condi-
tions in B.@. Thm. 5.2.1.

e A is the generator for the diffusion (stated in the formula list).

. fECIERY).

If we are seeking a solution Af () = 0 at = in a set U, we let 7§} be the first exit time
from U and consider
flx) =E"f(Xy) (26)
to be a candidate for the solution at z. This is true for "nice” problems.

(b) The generator for the Brownian motion is A = $V2. Let pg be the probability that
BY exits for the first time through the outer circle (and p, = 1—pg for first exit through the
inner circle). We apply Dynkin Formula with functions which are equal to f; (z) = log ||
and f, (z) = |z|° for z € U. Outside U we assume that the functions are adjusted so that
they belong to CZ (R?) (or even C? (R?)).

Since Af; () =0 in U, we have

E*f1 (X;) = prlog R+ (1 — pr)logr = log|z|, (27)



and

log |z| — logr
_ 28
PR=Tog R —logr’ (28)
log R — log |z
L =1—pp= 2T OB 29
b bR log R —logr (29)
We then apply f2, and observe first that
1/ 0 0?
AR()= 3 (a—x% i 8—969 (2 +22) = 2. (30)
Then
E°fo (X,) = prR%>+ (1 —pr)r? = |z|° + 2 x E*ry (31)
and
Efry = [pRR2 + (1 —pg)r? — |x|2} /2 (32)

(A direct proof that the right hand side is indeed larger than 0 for r < |z| < R is left to the
reader!). When R — oo, then p, — 1 and pr — 0. However, it is clear that E*7y — oo,
since ppR? ~ R?/log R O
(c) This point starts similar to (b), applying fi (z) = |z|*™™:
prR* "+ (1= pp)r® " = |a|* ™" (33)

Thus,

pT’ - R2in _ ’["27,” (34)
Since R~""? — 0 when R — oo, we have
n—2
lim p, = =
A=y
T pr =1 (r/ o). 35)

The first hitting time of the inner sphere is thus oo for a strictly positive fraction, 1 —
(r/ |z])" 2, of the paths (which never hit S). This implies that E7% must be infinite.



List of useful formulae

Note: The list does not state requirements for the formulae to be valid.
1D Gaussian variable X € N (u,0?);
E (X - :u>4 - 30-47

2

E (eX _“) =e2.
Two formulae for Conditional Expectations:

(i) IfY is H-measurable, then E(YX|H) = YE (X|H).
(i4) If X is independent of H, then E (X |H) = E(X).

The It6 Isometry:

T 2 T
E /0 f(t,w)dB; (w) Z/O ELf (t,w)* dt = || £ 22 0x o)
Ito Formula:
dg dg dg 10%g , 0% 10%g N
dg(t.X;.Y,) = =dt + =dX; + =dY, + ——= (dX dX,dY;, + -——=(dY,)*.
91 Xe Yo) = pdit 5 dXid 5 dYid 5 e (X 4 5, dXudYid 555 ()
and Rules.

The Generator for dX; = 5; (X;) dt + o (X;) dB;:

AN@ =Y 5 g @ +3 Y (1@a @) 5t

ij=1

(7).

i,j 0x;0x;

Potential Solutions:

V2f =0forall z € R", || # 0:
n=2: f(x)=log(lz]),
n>2 f(z)=|z*".

(38)

(39)

(42)



