MA 8101 Stokastiske metoder i systemteori
AUTUMN TERM 2003

Suggested solution with some extra comments

The exam had a list of useful formulae attached. This list has been added here as well.

1 Problem

In this problem we are considering a standard Brownian motion By in R starting at 0.

(a) State the basic properties of the Brownian motion. Define, for a fized a > 0, the process
Xt == aBt/a2. (1)

Verify that also X is a standard Brownian motion.

A standard Brownian motion starting at 0 is a Gaussian stochastic process defined for ¢t €
[0, 00) fulfilling

1. EBt == O,
2. Cov (BtBs) =min(t,s).

From (2) it follows that a B.M. has orthogonal increments. There exists a version of B.M. with
continuous paths.

It is obvious that X; is a Gaussian process (This actually requires that all finite collections
(X4, -+, Xty) are multivariate Gaussian, but this follows since B; has such a property).
Moreover, 1. clearly true. Finally,

Cov (X¢, Xs) = a® Cov (By/q2By/42)
:a2><min<s t) (2)

a?’ a?

= min (s,1).

(b) Let 0 =tg < t1 < --- < tny1 =T be a partition of the interval [0,T] and ¢ the elementary
function

N
o (tw) = e (@) Xitya—t;) (£) 3)

j=0
What does it mean that ¢ is in the class V[0,T], and what is then the value of the Ité integral
T
| et ani oy (®)
0

Show that .
E < /0 £ (t,w) dB, (w)) 0. (5)

for all f € V[0,T].



The class V[0, T] consists of B x F-measurable functions f (t,w) € L? (92 x [0,T]) such that
f (t,w) is Fi-measurable for all ¢t € [0,T]. Here this will be the case if E <e2-> < oo and e; is

Fi,-measurable for all j =0,---, N. Also,

=2

T
/0 o (tw)dB (W) = 3 e (@) [Biyw, (@) — By, (@)] .

§=0
Since e; and By, — By, are independent,
E (ej [Bt

_Btj]) :E(BJ)E(Bt _Btj) =0.

j+1

E </OT<p(t,w)dBt (w)> = 0.

Jj+1

Thus,

J

(6)

(7)

(8)

In general, the It6 integral is a limit of integrals of simple functions. This is about all we
requite for the exam, but the full argument is as follows: We find a sequence {¢,} such that

E(|S ndB — [ faB[*) — 0. Then

(/)
(o) -5 ) [ f -0

<€| [ tn-n)ap] )
o\ 1/2
< (E ('/(wn—f)dB )) —
(c) Compute the variance of the integral
1
0
This follows immediately from Itd’s Isometry since we know that the expectation is 0:
1 1 2
Var ( / LB, (w) dB (w)) _E < / 1B, (w) dB, (w))
0 0
1 1 1
= / E(tB)*dt = / 2 tdt = ~. (11)
0 0 4
2 Problem
We consider two Ito processes X; and Y; on R!.
(a) Let X; and Y; be two Ité processes X and Yy on R. Prove that
d (XY3) = XidY; + Yid X, + dX,dY;. (12)



For this formula we apply the 2D It6 formula for the function g (x,y) = zy.Then

dg dg d%g
d(X,;Y}) = ~2dX. dY; + —2-dX, - dY,
(XiYy) ox t+8y t+8x8y t t
=YdX; + XodY; + 1-dX; - dY;. (13)
(b) Let
X, = ¢'/?sin (By) . (14)

Show that X; can be written as an Ito integral.

We compute dX; using Ito’s formula:

1 1
dX; = 5 Xydt + /% cos (By) dBy + 5e'l? (—sin By) dt
= e!2 cos (By) dB,. (15)

Hence,

t
X, = / e*/% cos (By) dBs, (16)
0

since it is clear that e*/2 cos (B;) € V[0, T).

(¢) The conclusion in (2.b) implies that X; is a Martingale with respect to the filtration of
the Brownian motion, F;. Prove this directly by applying the definition of a Martingale to the
expression for Xi in Eqn. 14.

The first is to observe that
E(X)) <E(|X,])=E (et/2 Jsin (Bt)]> < etl? < 0. (17)

Since X; is a determininistic, continuous function of B, X; is clearly Fi-measureable.

We finally need to show that E (Xiia¢|F:) = X; for At > 0. Let us write Biyar = By + AB.
Then

E (XeraelFr)

—E (e(t+At)/2 sin (B; + AB) |ft)

= (FAD/2E (sin (By) cos (AB) + cos (B;) sin (AB) | 7)

W o(t+AD/2 [ (B,) E (cos (AB) |F;) + cos (By) E (sin (AB) | F)]

@) (t+an)/2 [sin (By) E (cos (AB)) + cos (B;) E (sin (AB))] (18)
(@) (t+At)/2 [sin (By) e A2 4 0]

= e'/?sin (By) = X;.

Here () and (24) are formulae for the conditional expectation. Moreover, for (iii), E (cos (AB))
is listed and E (sin (AB)) is obviously 0.



3 Problem

(a) Show that a linear stochastic differential equation
dX; =p(t) Xedt + q (t) dBy
may be solved by an integrating factor h(t) such that
d[h (t) Xi] = h (t) q (t) dB:.
It follows from It6’s formula that
d(h(t) X;) =h (t) Xedt + b (t) dX;.

We then multiply Eqn. 19 by A (¢):

h(t)dX, = d (h(t) X;) — b () Xedt = b (8) p (t) Xydt + R (t) ¢ (t) dBy.

The stated form follows if we find A such that

() = h()p (D).

Then the solution to Eqn. 19 is:

h(8) X, — b (to) Xiy = /th(t)q(t) iB,.

to

or _ h(to) Xy + [ h(t)q(t)dB,
o X0) :

(b) Apply the method in (a) to solve the equation
1
dX; = ;Xtdt—l-tdBt, t>1, Xi=1.

The function h has to satisfy the equation

1

'+ =-h=0,

t

that is, b (t) = ¢t~!. In this case the start is at ¢ = 1 such that

X1+ [} 1sdB,

X,
! 1/t

=t(14+B,—B))=tB", t>1.

4 Problem

Consider the following geometric Brownian motion in R': X; = vexp (—t+ B;), 0 < t.

(a) Show that X; is an Ité diffusion with generator

i Pl
2dx = 2 dx?’

(21)

(22)

(23)

(28)

(29)



The diffusion representation of X, is
1
dX; = —Xudt + X:dBy + iXtdt
X
= —%dt + X,dB. (30)

The formula for the generator follows from

d 1 ,d
A=p—+ -0?— 1
Bd:z: + 27 dx? (31)
when dX; = 8dt + odB;.
(b) We start X; at © =1 and define, for xo <1,
70 (w) = min{t ; Xi (w) < zo}. (32)
Prove that
Ero= — log xo. (33)

We are going to apply Dynkin’s Formula and need to know that E7g < oo. Here the part E~*
will effectively "kill" the Brownian motion part EB¢. Of course, X; will also cross the level z
a.s. This argument is sufficient for the exam, but the full proof could be based on the law of
the iterated logarithm, or the following simple estimate:

>
> logxo + u)

u
B, log g + u
= <u1/2 > 1/ ) (34)

=0 (u_l/ze_“) )

when u — 00; using the inequality in the list. This is sufficient for Ey to be finite.

The next step is to find an f such that Af is equal to a constant. Here f (z) = logx will do

since
zdlogx xde log

2 dx + 2 dz?
By Dynkin’s Formula we then have

~ 1. (35)

EL(f (X)) = log (o) = log 1 + E* ( /0 ) ds)
= —ET(), (36)

or

Ero = —log (o) . (37)
(c) Let a,b be two positive numbers, a < b. We start Xy at x € [a,b] and let
p = Pr (X, hits level b before it hits level a)

Determine p for all = € [a,b].



We need to find a function f (z) such that Af = 0, and try «7:

2 dz +?da§2 -

dx” 2 P 1
S —ﬁ(—”+w<v—1>>=o, (38)
2 2
for v = 2. We then apply Dynkin’s formula with the function f (z) = 27, v = 2. The expected
escape time from the interval [a, b] is clearly finite since the situation will be similar to the case
in (b) for the lower level a. Thus

E(X))=p-b"+(1—p)-a” =27 +0, (39)
and hence,
7 —a”
D= b (40)



A list of useful formulae

Note: The list does not state requirements for the formulae to be valid.

The probability density of a 1D Gaussian variable with mean y and variance o:

o (z) = 1 ex _M (41)
 V2no P 202
A definite integral:
o] 2
/ cos (z) exp <—;2> dz = \2r0e /2. (42)
oo o

An inequality:
Let X be N (0,1) and > 0. Then

Two formulae for Conditional Expectations:

(1) IfY is H-measurable, then E (XY|H) = YE (X|H).
(¢9) If X is independent of H, then E (X|H) = E(X).

The It6 isometry:

2

T T
e[ rwanw) = [ (EIF@@R) de= 11 quom (44)
It6’s 2D formula:
dg . g dg 19%g 2 0% 1829, 0
X, ) = — —dX; + —=dYs + ——= (dX, XidY; + ——=(dYy)”. (4
dg (t, X, Yz) 8tdt+ B:Ud t+8yd ¢+ 5 922 (dXy) +8x8yd tdYs + 23y2(d )" (45)
and "the rules".
The generator:
< of 1< / Pf
AN @ =360 5 @45 3 (c@o @), goda @ (46)
Dynkin’s Formula:
e (7 06 =@+ ([T aronas). (a7)



