
MA8109 Stokastiske metoder i systemteori
Autumn 2007

Suggested solution and extra comments
(Revised version December 10)

1 Problem

Consider the probability space f
;F ; Pg and three sets A1, A2, A3 2 F where A1[A2[A3 = 
.
Moreover, the sets are disjoint (Ai \Aj = ? whenever i 6= j), and P (Ai) > 0 for i = 1; 2; 3.
(a) List the sets in the �-algebra H generated by A1, A2, and A3.

(b) The function Y from 
 into R is H-measurable. Show that Y is equal to a constant on
each of the sets A1, A2, and A3. (Hint: Consider f!;X (!) = ag)
(c) Using the result from (b), compute the conditional expectation E (XjH) (!) for an arbitrary
stochastic variable X.

Solution:

(a) The de�nition of a �-algebra is found in the notes. The �-algebra H generated by A1,
A2, and A3 is the formally smallest �-algebra containing A1, A2 and A3. Using the de�nition,
it is obvious that H contains A1, A2, A3, 
, ?, and, in addition the 3 sets Ac1 = A2 [ A3,
Ac2 = A1 [A3, and Ac3 = A1 [A2.
(b) When Y is H-measurable, then for all sets B in the Borel algebra of R,

X�1 (B) = f!;X (!) 2 Bg 2 H: (1)

Thus, if X (!1) = a for an !1 2 A1, then f!;X (!) = ag will have to be equal to A1; A1 [A2,
A1 [ A3, or 
. In any case, X will have to be constant on A1. The same argument works for
A2, and A3.

(c) If we do not di¤er between functions equal a.s., the conditional expectation E (XjH) will be
H-measurable. From (b), we then know that it is constant on each of the sets A1, A2, and A3,
and it remains to determine the constants, say ai = X (!) for ! 2 Ai. Applying the de�nition,
we have for all H 2 H; Z

H
E (XjH) dP =

Z
H
XdP: (2)

Then, using H = A1, A2, and A3, we obtainZ
Ai

aidP = aiP (A) =

Z
Ai

XdP; (3)

or

ai =

R
Ai
XdP

P (A)
; i = 1; 2; 3: (4)

2 Problem

(a) Give a brief explanation of an adapted, elementary function, �, and de�ne the corresponding
Itô integral,

I (!) =

Z T

S
� (t; !) dBt (!) : (5)
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State the expectation and variance of I.

(b) Compute the expectation and the variance of the Itô integralZ 1

0
(B2t � t)dBt (6)

(Hint: If X is normal with mean � and variance �2, then E (X � �)4 = 3�4)
(c) Let Ft be the �ltration w.r.t. 1D Brownian motion. Prove that

Mt = B
2
t � t (7)

is an Ft-Martingale.

Solution:

(a) An adapted function needs �rst of all a �ltration. In the present case, this is the �ltration
Ft de�ned by the Brownian motion, that is, Ft is the �-algebra generated by fBsg0�s�t. A
function adapted to Ft is a random process, say X (t), where X (t) is Ft-measurable for all
t-s. An elementary function � is a process that is constant on each set of a partition P of an
interval [S; T ]. The partition consists of all intervals [tk; tk+1] de�ned by

S = t0 < t1 < � � � < tn�1 < tn = T (8)

and

� (t; !) =

n�1X
k=0

ek (!)�[tk;tk+1) (t) : (9)

For � to be Ft-adapted, we need that ek (!) is Ftk -adapted for each k. In order to be in
V [S; T ], we also require that the variance stated below is �nite, and a measurability condition
(B.Ø. Def. 3.1.4). The Itô-integral of � is de�ned as

I (!) =

Z T

S
� (t; !) dBt (!) =

n�1X
k=0

ek (!)
�
Btk+1 (!)�Btk (!)

�
: (10)

Since ek (!) and�Bk = Btk+1�Btk are independent, EI = 0. Moreover, using the Itô Isometry,

Var I2 = EI2 = E

�Z T

S
j� (t; !)j2 dt

�
=

Z T

S
E j� (t; !)j2 dt =

n�1X
k=0

E jekj2 (tk+1 � tk) : (11)

(This is also easy to see directly using the properties of ek and �Bk).

(b) This is an Itô-integral since (B2t �t) is Ft-adapted. Using the Itô Isometry, we �rst compute

E(B2t � t)2 = E
�
B4t � 2tB2t + t2

�
= 3t2 � 2t2 + t2 = 2t2: (12)

Then,

Var

�Z 1

0
(B2t � t)dBt

�
=

Z 1

0
2t2 =

2

3
: (13)
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(c) The shortest proof of this is to observe (using Itô�s Formula) that

d
�
B2t � t

�
= �dt+ 2BtdBt +

1

2
2 (dBt)

2 = 2BtdBt: (14)

Thus,

B2t � t = 2
Z t

0
BsdBs; (15)

and all Itô-integrals are Ft-martingales (B.Ø. Cor. 3.2.6).
Alternatively, checking the martingale de�nitions, B2t � t � L2 (
) � L1 (
), and also adapted
to Ft. Finally, for 0 � s < t, and �B = Bt �Bs,

E
�
B2t � tjFs

�
= E

�
(Bs +�B)

2 � tjFs
�

= E
�
B2s + 2Bs�B +�B

2 � tjFs
�

= B2s + 2BsE�B + (t� s)� t (16)

= B2s � s:

3 Problem

(a) Solve the 1D stochastic di¤erential equation

dXt = (1�Xt) dt+ dBt; t � 0; (17)

where X0 = Z. Here Z has mean � and variance �2 and is independent of the Brownian
motion. Write down the time varying mean and the variance of the solution (Hint: Apply a
suitable integrating factor).

(b) Assume that Xt and Yt satisfy the stochastic di¤erential equations (Xt; Yt; Bt 2 R):

dXt = �Xtdt+ YtdBt; X0 = x0;

dYt = �Ytdt�XtdBt; Y0 = y0: (18)

Derive and solve the di¤erential equation for Rt = X2
t + Y

2
t .

Solution:

(a) The equation may be transformed into the class of linear equations we have considered by
introducing Yt = Xt � 1. The trick with an integrating factor may also be applied directly
by multiplying the equation with a function h (t) and observe that h (t) dXt = d (h (t)Xt) �
Xth

0 (t) dt:
d (h (t)Xt)�Xth0 (t) dt = h (t) dt�Xth (t) dt+ h (t) dBt:

For h (t) = et we obtain
d
�
etXt

�
= etdt+ etdBt;

or

Xt = Ze
�t +

�
1� e�t

�
+

Z t

0
es�tdBs:
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Finally,

EXt = e
�tEZ+

�
1� e�t

�
+E

Z t

0
es�tdBs = e

�t�+
�
1� e�t

�
;

VarXt = e
�2t�2 +Var

Z t

0
es�tdBs = e

�2t�2 +

Z t

0
e2(s�t)ds

= e�2t�2 +
1

2

�
1� e�2t

�
:

(Note that Z is also independent of
R t
0 e

s�tdBs).

(b) In this case, the 2D process (Xt; Yt) is transformed into the 1D process Rt = X2
t + Y

2
t .

We need the multidimensional Itô Formula for g (x; y) = x2 + y2, which is this case, since
@2g=@x@y = 0, will be

dg (x; y) = 2xdx+ 2ydy +
2

2
(dx)2 +

2

2
(dy)2 : (19)

Thus, also introducing the rule (dBt)
2 = dt,

dRt = 2Xt (�Xtdt+ YtdBt) + 2Yt (�Ytdt�XtdBt) + Y 2t dt+X2
t dt

= (2�+ 1)
�
X2
t + Y

2
t

�
dt = (2�+ 1)Rtdt (20)

The solution of this (ordinary) di¤. equation follows immediately

Rt =
�
x20 + y

2
0

�
e(2�+1)t: (21)

4 Problem

(a) De�ne the generator A of an autonome Itô di¤usion

dXt = b (Xt) dt+ � (Xt) dBt; Xt 2 Rn; Bt 2 Rm: (22)

Express the solution u (t; x), t > 0, x 2 Rn, of the problem

@u

@t
= Au;

u (0; x) = f (x) ; (23)

in terms of f and Xt. Show how this gives an explicit formula for the solution when the
di¤usion is ordinary Brownian motion.

The Ornstein�Uhlenbeck process is an Itô di¤usion and a simple 1D model for physical Brown-
ian motion. Consider the special case

dXt = �Xtdt+ dBt: (24)

Let 0 < c < C and consider the stopping time

�c;C = inf ft � 0; X0 = c; Xt = 0 or Xt = Cg : (25)

It is known that E (�c;C) <1.
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(Hint for (b) and (c): The di¤erential equation �xy0 + 1
2y
00 = 1 has the general solution

y (x) = C1 + C2g (x) + yp (x) ; (26)

where

g (x) =

Z x

0
es

2
ds;

yp (x) =
p
�

Z x

0
erf (s) es

2
ds; (27)

erf (x) =
2p
�

Z x

0
e�s

2
ds:

(b) Compute the probability that Xt hits the level C before it hits 0.

(c) Express E (�c;C) in terms of the functions in Eqn. 27. Determine E (�c), where �c =
inf ft � 0; X0 = c; Xt = 0g.
Solution

(a) The generator is the di¤erential operator

A = b (x) � r+ 1
2

nX
i;j=1

�
��t
�
ij

@2

@xi@yj
: (28)

The solution may be expressed as

u (t; x) = Exf (Xt) : (29)

The probability density for a Brownian motion at time t starting at 0 for t = 0 is

' (x) =
1

(2�t)n=2
exp

 
�jxj

2

2t

!
: (30)

Thus, is that particular case,

u (t; x) = Exf (Bt) =

Z
y
f (y)' (x� y) dny: (31)

(b) This is an application of Dynkin�s formula: If E� <1, then for an f 2 C2c (Rn),

Exf (X� ) = f (x) + E
x

Z �

0
Af (Xs) ds: (32)

In the present case, the generator is the operator

�x d
dx
+
1

2

d2

dx2
; (33)

and the idea is to �nd a nice f 2 C2c (R) such that Af = 0 on the interval [0; C] Here, the
general solution of the equation

�x df
dx
+
1

2

d2f

dx2
= 0 (34)
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is given, and g (x) will work if we modify it with a smooth transition to 0 outside [0; C], e.g.
f (x) = g (x) � (x) where � 2 C2c (R), � (x) = 1 on [0; C]. Let pC be the probability we are
looking for. Then from Dynkin�s Lemma,

pCg (C) + (1� pC) g (0) = g (c) + 0: (35)

Since g (0) = 0;we obtain

pC =
g (c)

g (C)
: (36)

(c) We still use Dynkin�s Formula, and need that Af = 1 on the interval [0; C]. Therefore, yp
(actually yp (x) � (x)) is feasible since Ayp (Xt) = 1 as long as Xt 2 [0; C]. Then,

pCyp (C) + (1� pC) yp (0) = yp (c) + Ex (�c;C) : (37)

Hence,

Ex (�c;C) = pCyp (C)� yp (c)

=
g (c)

g (C)
yp (C)� yp (c) (38)

=
yp (C)

g (C)
g (c)� yp (c) :

If we look at the de�nitions of g and yp, we observe �rst of all that

yp (C)

g (C)
=

p
�
R C
0 erf (s) e

s2dsR C
0 e

s2ds
<
p
�: (39)

and, moreover,

lim
C!1

R C
0 erf (s) e

s2dsR C
0 e

s2ds
= 1: (40)

Thus, Ex (�c;C) is uniformly bounded:

Ec (�c;C) <
p
�g (c)� yp (c) =

p
�

Z c

0
(1� erf (s)) es2ds: (41)

Since we also have
�c;C (!) %

C!1
�c (!) (42)

for all paths, we obtain by the Monotone Convergence Theorem that Ec (�c;C) %
C!1

Ec (�c), or

Ec (�c) =
p
�

Z c

0
(1� erf (s)) es2ds: (43)

Digression: Observe that it is essential that Af in Dynkin�s formula does not cause problems
for us when jxj ! 1. Even if Ayp (x) = 1 for all values of x, we can not write something like

yp (0) = yp (c) + E
c

Z �c

0
Ayp (Xs) ds = yp (c) + E

c (�c) ;

which leads to the absurd result
Ec (�c) = �yp (c)!

We need to ensure that we are able to taper o¤ f by a function like � above, and that is
impossible if we just consider the interval [0;1).
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