MAS8109 Stokastiske metoder i systemteori
Autumn 2007
Suggested solution and extra comments

(Revised version December 10)

1 Problem

Consider the probability space {2, F, P} and three sets A1, A2, Az € F where AjUA3UA3 = Q).
Moreover, the sets are disjoint (A; N Aj = @ whenever ¢ # j), and P (A;) >0 for i=1,2,3.

(a) List the sets in the o-algebra H generated by Ay, As, and As.

(b) The function Y from Q into R is H-measurable. Show that Y is equal to a constant on
each of the sets Ay, Aa, and As. (Hint: Consider {w;X (w) =a})

(c¢) Using the result from (b), compute the conditional expectation E (X|H) (w) for an arbitrary
stochastic variable X.

Solution:

(a) The definition of a o-algebra is found in the notes. The o-algebra H generated by Aj,
Ao, and As is the formally smallest o-algebra containing A;, As and As. Using the definition,
it is obvious that H contains Ay, Ao, Az, 2, &, and, in addition the 3 sets A = Ay U As,
A; = A1 U Az, and Ag = A; U As.

(b) When Y is H-measurable, then for all sets B in the Borel algebra of R,
X1 (B)={w;X (w) € B} €H. (1)

Thus, if X (w1) =a for an w; € Ay, then {w; X (w) = a} will have to be equal to A;, A; U Aa,
A1 U As, or Q. In any case, X will have to be constant on A;. The same argument works for
AQ, and A3.

(c) If we do not differ between functions equal a.s., the conditional expectation E (X |H) will be
‘H-measurable. From (b), we then know that it is constant on each of the sets A, A, and As,
and it remains to determine the constants, say a; = X (w) for w € A;. Applying the definition,
we have for all H € H,

/ E(X|H)dP = / XdP. (2)
H H
Then, using H = A;, Az, and As, we obtain
o [, XdpP
_ JA L
a; = P (A) , 1=1,2,3. (4)
2 Problem

(a) Give a brief explanation of an adapted, elementary function, ¢, and define the corresponding
1t6 integral,

T
I(w) = /S b (t,w) dBy (@) (5)

1



State the expectation and variance of 1.

(b) Compute the expectation and the variance of the Ité integral

/ (B2 - B, (6)

0

(Hint: If X is normal with mean p and variance o2, then E (X — p)* = 304)
(c) Let Fy be the filtration w.r.t. 1D Brownian motion. Prove that

M; = B? —t (7)

1s an Fy-Martingale.
Solution:

(a) An adapted function needs first of all a filtration. In the present case, this is the filtration
Fi defined by the Brownian motion, that is, F; is the o-algebra generated by {Bs}y<,«; A
function adapted to F; is a random process, say X (t), where X (t) is F;-measurable for all
t-s. An elementary function ¢ is a process that is constant on each set of a partition P of an
interval [S,T]. The partition consists of all intervals [t, t5+1] defined by

S=tg<t1 < - <th1<tp=T (8)
and

n—1
- Z €k (w) Xltr tht1) (t) : (9)
k=0

For ¢ to be Fi-adapted, we need that e (w) is Fy,-adapted for each k. In order to be in
VS, T], we also require that the variance stated below is finite, and a measurability condition
(B.Q. Def. 3.1.4). The Ito-integral of ¢ is defined as

/ ¢ (t,w) dBy (w Zek (Biy,, (w) — By, (w)) - (10)

Since e (w) and ABy = By, ,, — By, are independent, EI = 0. Moreover, using the Ito Isometry,

VarI> =EI* =E </T |¢(t,w)|2dt>

S

:/S E | (t,w)|?dt = ZE|ek| (th1 — tr) - (11)

(This is also easy to see directly using the properties of e, and ABy).
(b) This is an Ito-integral since (B?—t) is Fi-adapted. Using the It6 Isometry, we first compute

Var </01(Bt2 — t)dBt> = /0121:2 = % (13)

Then,



(c) The shortest proof of this is to observe (using Itd’s Formula) that
1
d (B} —t) = —dt + 2B,dB; + 52 (dB;)* = 2B;dB;. (14)

Thus,
t
B —t= 2/ BsdBs, (15)
0

and all Ito-integrals are Fi-martingales (B.@. Cor. 3.2.6).

Alternatively, checking the martingale definitions, B? —¢ C L?(Q2) C L' (£2), and also adapted
to F¢. Finally, for 0 < s < t, and AB = B; — Bs,

E (B —t17,) = E (B, + AB) — 1|,
= E (B} +2B;AB + AB® — t|F,)
= B?+2B,EAB + (t —s) — t (16)

_ p2
= B, —s.

3 Problem

(a) Solve the 1D stochastic differential equation
dX; = (1 — Xt) dt +dBy, t > 0, (17)

where Xog = Z. Here Z has mean p and variance o and is independent of the Brownian
motion. Write down the time varying mean and the variance of the solution (Hint: Apply a
suitable integrating factor).

(b) Assume that X; and Yy satisfy the stochastic differential equations (X4, Y:, By € R):

dXt = Othdt + thdBt, X() = X,
dY; = aYydt — X dBy, Yo = yo. (18)

Derive and solve the differential equation for Ry = X} + Y2
Solution:

(a) The equation may be transformed into the class of linear equations we have considered by
introducing Y; = X; — 1. The trick with an integrating factor may also be applied directly
by multiplying the equation with a function h (t) and observe that h (t) dX: = d (h(t) X¢) —
Xth, (t) dt:

d(h(t) Xy) — X¢h' (t)dt = h(t)dt — X¢h (t) dt + b (t) dBy.

For h(t) = ! we obtain
d (etXt) = eldt + etdBt,

or

t
X, =Ze t 4+ (1 — e_t) +/ e*tdB;.
0



Finally,
t
EX;=e'EZ+ (1 - 6_t) +E/ e B, = et (1 — 6_t) )
0
t t
Var X; = e *o® + Var/ e*'dBs = e %2 + / e2(5=1) g
0 0
1
=e %o? + 5 (1- e ).

(Note that Z is also independent of fg e tdBsy).

(b) In this case, the 2D process (X;,Y;) is transformed into the 1D process Ry = X? + Y2
We need the multidimensional Ité6 Formula for g (x,y) = 22 + y?, which is this case, since
029 /020y = 0, will be

2 2
dg (z,y) = 2zdx + 2ydy + 3 (dz)? + 3 (dy)?. (19)

Thus, also introducing the rule (dB;)* = dt,

dR; = 2X; (aXydt + YidBy) 4 2Y; (aYdt — X¢dBy) + Y2dt + X2dt
= (2 + 1) (X7 + Y?) dt = (2a + 1) Rydt (20)

The solution of this (ordinary) diff. equation follows immediately

R = (:1:(2) + yg) e(at)t, (21)

4 Problem

(a) Define the generator A of an autonome Ité diffusion

dXt = b(Xt) dt + o (Xt) dBt, Xt S Rn, Bt € Rm (22)

Express the solution u (t,x), t > 0, x € R™, of the problem

ou
s = Au,
u(O,x) =f (.’,1?), (23)

in terms of f and Xy. Show how this gives an explicit formula for the solution when the
diffusion is ordinary Brownian motion.

The Ornstein—Uhlenbeck process is an Ito diffusion and a simple 1D model for physical Brown-
ian motion. Consider the special case

dX; = —Xidt + dBs. (24)
Let 0 < ¢ < C and consider the stopping time
Teo=inf{t >0; Xo=¢, Xy =0o0r X; =C}. (25)

It is known that E (1.c) < 0.



(Hint for (b) and (c): The differential equation —xy' + %y" =1 has the general solution

y(z) = C1+ Cag (2) +yp (2), (26)
where
g(z) = /0 e” ds,
yp () = ﬁ/o erf (s) s ds, (27)

2 X
erf (z) = ﬁ/o €_S2ds.

(b) Compute the probability that X, hits the level C before it hits 0.

(¢) Express E (1.c) in terms of the functions in Eqn. 27. Determine E (1.), where 1, =
inf{t > 0; Xo=r¢, X¢=0}.

Solution

(a) The generator is the differential operator

B 1 < N 0
A=b(z)-V+5 JZZ:I (00"),; T (28)

The solution may be expressed as
u(t,z) = E°F (Xy). (29)

The probability density for a Brownian motion at time ¢ starting at 0 for t = 0 is

() = L exp i : (30)
(Qm)n/Q 2t
Thus, is that particular case,
u(ta) =€ (B) = [ 1Wea-v)d. (31)
y

(b) This is an application of Dynkin’s formula: If ET < oo, then for an f € C? (R"),

E*f (X)) = f () + E* / Af (X,) ds. (32)
0
In the present case, the generator is the operator
d 1 d?

and the idea is to find a nice f € C? (R) such that Af = 0 on the interval [0, C] Here, the
general solution of the equation

—z—+ -5 =0 (34)



is given, and g (z) will work if we modify it with a smooth transition to 0 outside [0, C], e.g.
f(z) = g(x)0(x) where § € C2(R), 6(z) = 1 on [0,C]. Let pc be the probability we are
looking for. Then from Dynkin’s Lemma,

pcg (C) + (L —pc) g (0) = g(c) +0. (35)
Since g (0) = 0,we obtain @
A

YT gy (36)

(c) We still use Dynkin’s Formula, and need that Af =1 on the interval [0, C]. Therefore, y,
(actually y, (z) 6 (z)) is feasible since Ay, (X¢) =1 as long as X; € [0, C]. Then,

pcyp (C) + (1 —pco) yp (0) = yp (¢) + E* (7e0) - (37)

Hence,

E* (1e,0) = pcyp (C) — yp (c)

_ ;ggyp ()~ (¢) (38)
_ y;gg (©) —up (c).

If we look at the definitions of g and y,, we observe first of all that

yp (C) _ ﬁfoc erf (s) e ds

g(C) foc es*ds <vm (39)

and, moreover,

C 2

f d
i do o (s)eTds (40)
C—oo fo es“ds

Thus, E” (7.,¢) is uniformly bounded:

B () < Vg (€) =1y (€)= V7 [ (1 ert (s)) s, (41)

Since we also have

Tec (W) /7 7o (w) (42)

C—o0

for all paths, we obtain by the Monotone Convergence Theorem that E¢ (7.c) " E®(7.), or

C—oo
B (r) = /7 /0 " (1= exf (5)) e ds. (43)

Digression: Observe that it is essential that Af in Dynkin’s formula does not cause problems
for us when |z| — co. Even if Ay, (z) =1 for all values of z, we can not write something like

Yp (0) = yp () + EC/O Ayp (Xs)ds = yp (c) + E°(70),
which leads to the absurd result
EC(7e) = —yp (o)!

We need to ensure that we are able to taper off f by a function like § above, and that is
impossible if we just consider the interval [0, c0).



