Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Let X, Y, I be sets, and $f: X \rightarrow Y$ a function. Prove the following statements:
a) If $A, B \subset X$, then $(A \cap B)^{c}=A^{c} \cup B^{c}$.
b) If $A_{i} \subset X$ for $i \in I$, then $\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c}$.
c) If $A \subset X$, then $f^{-1}\left(A^{c}\right)=f^{-1}(A)^{c}$.
d) If $A_{i} \subset X$ for $i \in I$, then $f^{-1}\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f^{-1}\left(A_{i}\right)$.

Hint: $x \in \bigcup_{i \in I} A_{i}$ iff $\exists j \in I$ such that $x \in A_{j}$, and $x \in \bigcap_{i \in I} A_{i}$ iff $\forall i \in I, x \in A_{i}$.

02 Find the σ-algebra on a set X generated by:
a) $A, B \subset X$ where $A \cap B=\emptyset$.
b) $\mathcal{A}=\{\{i\}\}_{i \in \mathbb{N}}$ where $X=\mathbb{N}$.

3 (Øksendal, Problem 2.3)
Prove that for any collection $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ of σ-algebras,

$$
\mathcal{H}=\cap_{i \in I} \mathcal{H}_{i}
$$

is a σ-algebra as well.
Hint: Verify all properties a σ-algebra should fulfill.

4 Let (X, \mathcal{F}, m) be a measure space and $A_{i} \in \mathcal{F}$ for $i \in \mathbb{N}$. Prove that
a) If $A_{1} \subset A_{2}$, then $m\left(A_{1}\right) \leq m\left(A_{2}\right)$.
b) $m\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)$.
c) If $A_{1} \subset A_{2} \subset A_{3} \subset \ldots$ and $A=\bigcup_{i=1}^{\infty} A_{i}$, then $m(A)=\lim _{i \rightarrow \infty} m\left(A_{i}\right)$.

Hint for b) and \mathbf{c}): Make disjoint unions, use σ-additivity of m.

5 Let m_{L} be the Lebesgue measure on \mathbb{R}. Prove that $m_{L}(\mathbb{Q})=0$.
Hint: Let $\mathbb{Q}=\bigcup_{i=1}^{\infty}$ and consider the intervals $\left(q_{i}-2^{-i} \epsilon, q_{i}+2^{-i} \epsilon\right)$.
6 Let $f_{1}, f_{2}: X \rightarrow \mathbb{R}$ be \mathcal{F}-measurable. Prove that $f(x)=\max \left(f_{1}(x), f_{2}(x)\right)$ is \mathcal{F} measurable.

Hint: Enough to prove that $f^{-1}((a, \infty)) \in \mathcal{F}$ for all $a \in \mathbb{R}$.

7 Let (X, \mathcal{F}, m) be a measure space and $f_{1}, f_{2}: A \rightarrow[0, \infty) \mathcal{F}$-measurable. Prove that

$$
\int\left(f_{1}+f_{2}\right) d m=\int f_{1} d m+\int f_{2} d m
$$

Hint: Prove it for simple functions, approximate general functions, and go to the limit using MCT.

8 Let (X, \mathcal{F}, m) be a measure space and $\phi: X \rightarrow[0, \infty)$ be \mathcal{F}-measurable. Prove that

$$
\mu(\emptyset)=0, \quad \mu(A)=\int_{A} \phi d m \quad \text { for any } \quad A \in \mathcal{F}
$$

defines a measure on (X, \mathcal{F}).

9 Let (Ω, \mathcal{F}, P) be a probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable on it. Define

$$
\mu_{X}(A)=m\left(X^{-1}(A)\right) \quad \text { for any } \quad A \in \mathcal{F}
$$

a) Show that μ_{X} is a probability measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.

Hint: $X^{-1}\left(\cap A_{i}\right)=\cap X^{-1}\left(A_{i}\right), X^{-1}\left(\cup A_{i}\right)=\cup X^{-1}\left(A_{i}\right)$.
b) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be $\mathcal{B}_{\mathbb{R}}$-measurable. Show that

$$
E\left(f(X)=\int_{X} f(X)\right) d P(\omega)=\int_{\mathbb{R}} f(x) d \mu_{X}(x)
$$

Hint: Prove it for simple functions, then approximate f, and go to the limit. You may use that $s_{n} \nearrow f$ then also $s_{n} \circ X \nearrow f \circ X$.

10 The Monotone and Dominated Convergence theorems both establish situations where the limits below are equal:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(\omega) d P(\omega) \quad \text { and } \quad \int_{\Omega}\left(\lim _{n \rightarrow \infty} f_{n}(\omega)\right) d P(\omega) \tag{1}
\end{equation*}
$$

Let $\Omega=[0,1]$ and P the Lebesgue measure. Consider the following sequence of functions $\left\{f_{n}\right\}$ defined on Ω :

$$
f_{n}(\omega)=\left\{\begin{array}{cc}
a_{n} \frac{\omega}{\omega_{n}}, & 0 \leq \omega \leq \omega_{n} \tag{2}\\
a_{n}\left(2-\frac{\omega}{\omega_{n}}\right), & \omega_{n} \leq \omega \leq 2 \omega_{n} \\
0, & 2 \omega_{n} \leq \omega \leq 1
\end{array}\right.
$$

where $\lim _{n \rightarrow \infty} \omega_{n}=0$ (make a sketch!).
(a) Prove that $g(\omega)=\lim _{n \rightarrow \infty} f_{n}(\omega)=0$ for all values of $\omega \in[0,1]$.
(b) Compute $\int g d P$ and $\lim _{n \rightarrow \infty} \int f_{n} d P$ when $a_{n}=\omega_{n}^{-1 / 2}, \omega_{n}^{-1}$, and ω_{n}^{-2}.
(c) For which cases in (b) will the function $h(\omega)=\max _{n} f_{n}(\omega)$ not be integrable?

11 a) Prove that if $X \leq Y$, then $E(X \mid \mathcal{H}) \leq E(Y \mid \mathcal{H})$.
Hint: Use that $E(X \mid \mathcal{H}) \geq 0$ if $X \geq 0$.
b) Show that if $0 \leq X_{1} \leq X_{2} \leq \cdots \leq X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X$, then $E\left(X_{n} \mid \mathcal{H}\right) \underset{n \rightarrow \infty}{\longrightarrow} E(X \mid \mathcal{H})$ a.e. (Note that $X_{n}(\omega) \underset{n \rightarrow \infty}{\longrightarrow} X(\omega)$ for all $\omega \in \Omega$ if we accept $+\infty$ as a limit for positive functions).

Hint: Use the Monotone Convergence Theorem and a) to prove that the limit function $Y=\lim _{n \rightarrow \infty} E\left(X_{n} \mid \mathcal{H}\right)$ exists and satisfies all conditions of $E(X \mid \mathcal{H})$. Also use that a pointwise limit of a sequence of \mathcal{H}-measurable functions is \mathcal{H}-measurable (This is a general result from measure theory. A sequence $\left\{f_{n}\right\}$ converges pointwise to f if $f_{n}(\omega) \underset{n \rightarrow \infty}{\longrightarrow} f(\omega)$ for all $\left.\omega\right)$.

12 a) Prove that if the covariance matrix $\boldsymbol{\Sigma}$ is non-singular (and hence positive definite!), then

$$
\begin{equation*}
\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{-i \mathbf{u}^{\prime} \mathbf{x}} e^{i \mathbf{u}^{\prime} \mu-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}} d^{n} u=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)} . \tag{3}
\end{equation*}
$$

Hint: Introduce new variables $\mathbf{y}=\boldsymbol{\Sigma}^{1 / 2} \mathbf{u}$, so that the integral splits into a product of one-dimensional integrals. Use that for $a \in \mathbb{R}$,

$$
\int_{\mathbb{R}} \exp \left(i y a-\frac{1}{2} y^{2}\right) d y=\sqrt{2 \pi} e^{-\frac{a^{2}}{2}} .
$$

b) Assume that \mathbf{X} is a multivariate Gaussian variable and $\mathrm{E}(\mathbf{X})=0$. Show, by taking appropriate partial derivatives of the characteristic function that:
(i) "The expectation of triple products always vanishes":

$$
\begin{equation*}
\mathrm{E}\left(X_{1} X_{2} X_{3}\right)=0 . \tag{4}
\end{equation*}
$$

(ii) "The Fourth-Cumulant Identity":
(5)

$$
\mathrm{E}\left(X_{1} X_{2} X_{3} X_{4}\right)=\mathrm{E}\left(X_{1} X_{2}\right) \mathrm{E}\left(X_{3} X_{4}\right)+\mathrm{E}\left(X_{1} X_{3}\right) \mathrm{E}\left(X_{2} X_{4}\right)+\mathrm{E}\left(X_{1} X_{4}\right) \mathrm{E}\left(X_{2} X_{3}\right) .
$$

Hint: Use the Taylor expansion to find the derivative of the characteristic function,

$$
\phi(\mathbf{u})=\exp \left(-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}\right)=1-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}+\frac{1}{2}\left(\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}\right)^{2}+\cdots .
$$

Look up Wikipedia or MathWorld for an explanation of the term cumulant.

