

**1** Let X, Y, I be sets, and  $f: X \to Y$  a function. Prove the following statements:

- a) If  $A, B \subset X$ , then  $(A \cap B)^c = A^c \cup B^c$ .
- b) If  $A_i \subset X$  for  $i \in I$ , then  $(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} A_i^c$ .
- c) If  $A \subset X$ , then  $f^{-1}(A^c) = f^{-1}(A)^c$ .
- d) If  $A_i \subset X$  for  $i \in I$ , then  $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$ .

**Hint:**  $x \in \bigcup_{i \in I} A_i$  iff  $\exists j \in I$  such that  $x \in A_j$ , and  $x \in \bigcap_{i \in I} A_i$  iff  $\forall i \in I, x \in A_i$ .

- 2 Find the  $\sigma$ -algebra on a set X generated by:
  - a)  $A, B \subset X$  where  $A \cap B = \emptyset$ .
  - b)  $\mathcal{A} = \{\{i\}\}_{i \in \mathbb{N}}$  where  $X = \mathbb{N}$ .
- **3** (Øksendal, Problem 2.3)

Prove that for any collection  $\{\mathcal{H}_i\}_{i \in I}$  of  $\sigma$ -algebras,

$$\mathcal{H} = \cap_{i \in I} \mathcal{H}_i$$

is a  $\sigma$ -algebra as well.

Hint: Verify all properties a  $\sigma\text{-algebra should fulfill.}$ 

- **4** Let  $(X, \mathcal{F}, m)$  be a measure space and  $A_i \in \mathcal{F}$  for  $i \in \mathbb{N}$ . Prove that
  - a) If  $A_1 \subset A_2$ , then  $m(A_1) \leq m(A_2)$ .
  - b)  $m(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} m(A_i).$
  - c) If  $A_1 \subset A_2 \subset A_3 \subset \ldots$  and  $A = \bigcup_{i=1}^{\infty} A_i$ , then  $m(A) = \lim_{i \to \infty} m(A_i)$ .

Hint for b) and c): Make disjoint unions, use  $\sigma$ -additivity of m.

**5** Let  $m_L$  be the Lebesgue measure on  $\mathbb{R}$ . Prove that  $m_L(\mathbb{Q}) = 0$ .

**Hint:** Let  $\mathbb{Q} = \bigcup_{i=1}^{\infty}$  and consider the intervals  $(q_i - 2^{-i}\epsilon, q_i + 2^{-i}\epsilon)$ .

**6** Let  $f_1, f_2 : X \to \mathbb{R}$  be  $\mathcal{F}$ -measurable. Prove that  $f(x) = \max(f_1(x), f_2(x))$  is  $\mathcal{F}$ -measurable.

**Hint:** Enough to prove that  $f^{-1}((a,\infty)) \in \mathcal{F}$  for all  $a \in \mathbb{R}$ .

**[7]** Let  $(X, \mathcal{F}, m)$  be a measure space and  $f_1, f_2 : A \to [0, \infty)$   $\mathcal{F}$ -measurable. Prove that

$$\int (f_1 + f_2)dm = \int f_1 dm + \int f_2 dm.$$

**Hint:** Prove it for simple functions, approximate general functions, and go to the limit using MCT.

**8** Let  $(X, \mathcal{F}, m)$  be a measure space and  $\phi : X \to [0, \infty)$  be  $\mathcal{F}$ -measurable. Prove that

$$\mu(\emptyset) = 0, \qquad \mu(A) = \int_A \phi \, dm \quad \text{for any} \quad A \in \mathcal{F},$$

defines a measure on  $(X, \mathcal{F})$ .

**9** Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X : \Omega \to \mathbb{R}$  a random variable on it. Define

$$\mu_X(A) = m(X^{-1}(A))$$
 for any  $A \in \mathcal{F}$ .

a) Show that  $\mu_X$  is a probability measure on  $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ .

Hint: 
$$X^{-1}(\cap A_i) = \cap X^{-1}(A_i), X^{-1}(\cup A_i) = \cup X^{-1}(A_i).$$

b) Let  $f : \mathbb{R} \to [0, \infty)$  be  $\mathcal{B}_{\mathbb{R}}$ -measurable. Show that

$$E(f(X) = \int_X f(X)) \, dP(\omega) = \int_{\mathbb{R}} f(x) \, d\mu_X(x).$$

**Hint:** Prove it for simple functions, then approximate f, and go to the limit. You may use that  $s_n \nearrow f$  then also  $s_n \circ X \nearrow f \circ X$ .

10 The Monotone and Dominated Convergence theorems both establish situations where the limits below are equal:

(1) 
$$\lim_{n \to \infty} \int_{\Omega} f_n(\omega) dP(\omega) \quad \text{and} \quad \int_{\Omega} \left( \lim_{n \to \infty} f_n(\omega) \right) dP(\omega) \,.$$

Let  $\Omega = [0, 1]$  and P the Lebesgue measure. Consider the following sequence of functions  $\{f_n\}$  defined on  $\Omega$ :

(2) 
$$f_n(\omega) = \begin{cases} a_n \frac{\omega}{\omega_n}, & 0 \le \omega \le \omega_n, \\ a_n \left(2 - \frac{\omega}{\omega_n}\right), & \omega_n \le \omega \le 2\omega_n, \\ 0, & 2\omega_n \le \omega \le 1, \end{cases}$$

where  $\lim_{n\to\infty} \omega_n = 0$  (make a sketch!).

- (a) Prove that  $g(\omega) = \lim_{n \to \infty} f_n(\omega) = 0$  for all values of  $\omega \in [0, 1]$ .
- (b) Compute  $\int g dP$  and  $\lim_{n\to\infty} \int f_n dP$  when  $a_n = \omega_n^{-1/2}, \omega_n^{-1}$ , and  $\omega_n^{-2}$ .
- (c) For which cases in (b) will the function  $h(\omega) = \max_n f_n(\omega)$  not be integrable?

11 a) Prove that if  $X \leq Y$ , then  $E(X|\mathcal{H}) \leq E(Y|\mathcal{H})$ .

**Hint**: Use that  $E(X|\mathcal{H}) \ge 0$  if  $X \ge 0$ .

b) Show that if  $0 \leq X_1 \leq X_2 \leq \cdots \leq X_n \xrightarrow[n \to \infty]{} X$ , then  $E(X_n | \mathcal{H}) \xrightarrow[n \to \infty]{} E(X | \mathcal{H})$  a.e. (Note that  $X_n(\omega) \xrightarrow[n \to \infty]{} X(\omega)$  for all  $\omega \in \Omega$  if we accept  $+\infty$  as a limit for positive functions).

**Hint**: Use the Monotone Convergence Theorem and a) to prove that the limit function  $Y = \lim_{n \to \infty} E(X_n | \mathcal{H})$  exists and satisfies all conditions of  $E(X | \mathcal{H})$ . Also use that a pointwise limit of a sequence of  $\mathcal{H}$ -measurable functions is  $\mathcal{H}$ -measurable (This is a general result from measure theory. A sequence  $\{f_n\}$  converges *pointwise* to f if  $f_n(\omega) \xrightarrow[n \to \infty]{} f(\omega)$  for all  $\omega$ ).

12 a) Prove that if the covariance matrix  $\Sigma$  is non-singular (and hence positive definite!), then

(3) 
$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\mathbf{u}'\mathbf{x}} e^{i\mathbf{u}'\mu - \frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}} d^n u = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)}$$

**Hint:** Introduce new variables  $\mathbf{y} = \mathbf{\Sigma}^{1/2} \mathbf{u}$ , so that the integral splits into a product of one-dimensional integrals. Use that for  $a \in \mathbb{R}$ ,

$$\int_{\mathbb{R}} \exp\left(iya - \frac{1}{2}y^2\right) dy = \sqrt{2\pi}e^{-\frac{a^2}{2}}.$$

b) Assume that **X** is a multivariate Gaussian variable and  $\mathsf{E}(\mathbf{X}) = 0$ . Show, by taking appropriate partial derivatives of the characteristic function that:

(i) "The expectation of triple products always vanishes":

$$\mathsf{E}\left(X_{1}X_{2}X_{3}\right) = 0.$$

(ii) "The Fourth-Cumulant Identity":

(5)  

$$\mathsf{E}(X_1X_2X_3X_4) = \mathsf{E}(X_1X_2)\mathsf{E}(X_3X_4) + \mathsf{E}(X_1X_3)\mathsf{E}(X_2X_4) + \mathsf{E}(X_1X_4)\mathsf{E}(X_2X_3).$$

Hint: Use the Taylor expansion to find the derivative of the characteristic function,

$$\phi(\mathbf{u}) = \exp\left(-\frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}\right) = 1 - \frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u} + \frac{1}{2}\left(\frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}\right)^2 + \cdots$$

Look up Wikipedia or MathWorld for an explanation of the term cumulant.