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Exercise set 1

1 Let X,Y, I be sets, and f : X → Y a function. Prove the following statements:

a) If A,B ⊂ X, then (A ∩B)c = Ac ∪Bc.

b) If Ai ⊂ X for i ∈ I, then (
⋃
i∈I Ai)

c =
⋂
i∈I A

c
i .

c) If A ⊂ X, then f−1(Ac) = f−1(A)c.

d) If Ai ⊂ X for i ∈ I, then f−1(
⋃
i∈I Ai) =

⋃
i∈I f

−1(Ai).

Hint: x ∈
⋃
i∈I Ai iff ∃j ∈ I such that x ∈ Aj , and x ∈

⋂
i∈I Ai iff ∀i ∈ I, x ∈ Ai.

2 Find the σ-algebra on a set X generated by:

a) A,B ⊂ X where A ∩B = ∅.

b) A = {{i}}i∈N where X = N.

3 (Øksendal, Problem 2.3)

Prove that for any collection {Hi}i∈I of σ-algebras,

H = ∩i∈IHi

is a σ-algebra as well.

Hint: Verify all properties a σ-algebra should fulfill.

4 Let (X,F ,m) be a measure space and Ai ∈ F for i ∈ N. Prove that

a) If A1 ⊂ A2, then m(A1) ≤ m(A2).

b) m(
⋃∞
i=1Ai) ≤

∑∞
i=1m(Ai).

c) If A1 ⊂ A2 ⊂ A3 ⊂ . . . and A =
⋃∞
i=1Ai, then m(A) = limi→∞m(Ai).

Hint for b) and c): Make disjoint unions, use σ-additivity of m.

5 Let mL be the Lebesgue measure on R. Prove that mL(Q) = 0.

Hint: Let Q =
⋃∞
i=1 and consider the intervals (qi − 2−iε, qi + 2−iε).

6 Let f1, f2 : X → R be F-measurable. Prove that f(x) = max(f1(x), f2(x)) is F-
measurable.

Hint: Enough to prove that f−1((a,∞)) ∈ F for all a ∈ R.
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7 Let (X,F ,m) be a measure space and f1, f2 : A→ [0,∞) F-measurable. Prove that∫
(f1 + f2)dm =

∫
f1dm+

∫
f2dm.

Hint: Prove it for simple functions, approximate general functions, and go to the
limit using MCT.

8 Let (X,F ,m) be a measure space and φ : X → [0,∞) be F-measurable. Prove that

µ(∅) = 0, µ(A) =

∫
A
φdm for any A ∈ F ,

defines a measure on (X,F).

9 Let (Ω,F , P ) be a probability space and X : Ω→ R a random variable on it. Define

µX(A) = m(X−1(A)) for any A ∈ F .

a) Show that µX is a probability measure on (R,BR).

Hint: X−1(∩Ai) = ∩X−1(Ai), X
−1(∪Ai) = ∪X−1(Ai).

b) Let f : R→ [0,∞) be BR-measurable. Show that

E(f(X) =

∫
X
f(X)) dP (ω) =

∫
R
f(x) dµX(x).

Hint: Prove it for simple functions, then approximate f , and go to the limit. You
may use that sn ↗ f then also sn ◦X ↗ f ◦X.

10 The Monotone and Dominated Convergence theorems both establish situations where
the limits below are equal:

(1) lim
n→∞

∫
Ω
fn (ω) dP (ω) and

∫
Ω

(
lim
n→∞

fn (ω)
)
dP (ω) .

Let Ω = [0, 1] and P the Lebesgue measure. Consider the following sequence of
functions {fn} defined on Ω:

(2) fn (ω) =


an

ω
ωn
, 0 ≤ ω ≤ ωn,

an

(
2− ω

ωn

)
, ωn ≤ ω ≤ 2ωn,

0, 2ωn ≤ ω ≤ 1,

where limn→∞ ωn = 0 (make a sketch!).

(a) Prove that g (ω) = limn→∞ fn (ω) = 0 for all values of ω ∈ [0, 1].

(b) Compute
∫
gdP and limn→∞

∫
fndP when an = ω

−1/2
n , ω−1

n , and ω−2
n .

(c) For which cases in (b) will the function h (ω) = maxn fn (ω) not be integrable?
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11 a) Prove that if X ≤ Y , then E (X|H) ≤ E (Y |H) .

Hint: Use that E (X|H) ≥ 0 if X ≥ 0.

b) Show that if 0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn −→
n→∞

X, then E (Xn|H) −→
n→∞

E (X|H) a.e.

(Note that Xn (ω) −→
n→∞

X (ω) for all ω ∈ Ω if we accept +∞ as a limit for positive

functions).

Hint: Use the Monotone Convergence Theorem and a) to prove that the limit
function Y = limn→∞E (Xn|H) exists and satisfies all conditions of E (X|H). Also
use that a pointwise limit of a sequence of H-measurable functions is H-measurable
(This is a general result from measure theory. A sequence {fn} converges pointwise
to f if fn (ω) −→

n→∞
f (ω) for all ω).

12 a) Prove that if the covariance matrix Σ is non-singular (and hence positive definite!),
then

(3)
1

(2π)n

∫
Rn

e−iu
′x eiu

′µ− 1
2
u′Σu dnu =

1

(2π)n/2 |Σ|1/2
e−

1
2

(x−µ)′Σ−1(x−µ).

Hint: Introduce new variables y = Σ1/2u, so that the integral splits into a product
of one-dimensional integrals. Use that for a ∈ R,∫

R
exp

(
iya− 1

2
y2

)
dy =

√
2πe−

a2

2 .

b) Assume that X is a multivariate Gaussian variable and E (X) = 0. Show, by
taking appropriate partial derivatives of the characteristic function that:

(i) ”The expectation of triple products always vanishes”:

(4) E (X1X2X3) = 0.

(ii) ”The Fourth-Cumulant Identity”:
(5)
E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4) + E (X1X4)E (X2X3) .

Hint: Use the Taylor expansion to find the derivative of the characteristic function,

φ (u) = exp

(
−1

2
u′Σu

)
= 1− 1

2
u′Σu+

1

2

(
1

2
u′Σu

)2

+ · · · .

Look upWikipedia or MathWorld for an explanation of the term cumulant.
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