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b) ze€ (U, Ai)erdl,Aiexg A foraliexeAfforalli oz ell; AS
c)zefHA) e flr)eA e fa)gAead [TH(A) e re fTHA)F

d) z€ fH(U; 4i) & flx) eU; Ai & f(z) € A; for all i & x € f1(4;) for all i &
el £ (4)

a) Note that X = AU B U (AU B)¢ and this union is disjoint since AN B = ().
Fapy =1{0,A,B,(AUB)*, AUB,AU(AUB)*, BU(AUB)", X}

b) Since any subset of N is a countable union of elements of A, it follows that
Fa = P(N), the set of all subsets of N.

It is enough to check all axioms: @& and €2 are in all H;-s , and hence in H. If A € H,
then A (and A®!) is in all H;-s, therefore A € H. For the last axiom, we observe
that if {A,} is in #H, then it is in all #; and so will the limit A be since all H;-s are
o-algebras . But then A € H.

a) Since A; C Ay, Ay = A; U (A2 N AF), a union of disjoint measurable sets. By
using the definition of a measure (o-additivity) we may conclude the following:
m(Az) = m(A1 U (A2 N Ai)) = m(Al) + m(A2 N A%) > m(Al)
—_——
>0

b) We would now like to show that m (| J;2; 4;) <> ooy m(4;). To do this we define
the following disjoint sets B;:

Bl = A17

By = Ag\ Ay,

B3 = Aj \ (Al U AQ),

k—1
B = Ap \ (U A,-).

i=1

We first show by induction that | J;°; A; = ;= Bi. Trivially, A; = B;. Now assume
Ule A; = Ule B; for some k € N and check if the same holds for k + 1,
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k k
(U Bi) UBgy1 = <U Ai) U Byy1,
=1

=1
k

k k41
Lﬂz:(UAJu<mﬂ\<UAJ> L 4.
i=1 i=1
This leads to

k+1

i=1 =1

i=1 i=1 i=1 i=1
since B; C A; and thus m(B;) < m(A4;) as shown in a).

c) Assuming A; C Ay C A3 C ... and A = J;Z, A;, we want to show that m(A) =
lim; oo m(A;). If we construct disjoint sets B; like in b), the following holds:

m(UBJ:mMH
=1
get:

for all n € N. By using the definition of A and the fact that (J;=; 4; = U;o, B; we

m(A) =m (U Ai) =m (U Bz’) = Zm(Bz)
i=1 i=1 i=1

n

n
= 2B = i (U Bz)
1=

= lim m(A4,).
i=1

n—oo
Let my, be the Lebesgue measure on R and let € > 0. Let {g,}nen be a sequence
of the elements in Q. Define the open intervals A,, = (g, — 27 "€, g, + 27 "€). Notice
that Q C UpenAy, thus

€
— = €

27’L
neN neN
Since € is chosen arbitrarily small, we have mp(Q) =0

mr(Q) < mr(UnenAn) < Z mr(Ap) =

@ Assuming f1, fo are F-measurable, we know
fr((a,00)) € F and f; ' ((a,00)) € F,Va € R.
From this, we find that

fH(a,00)) ={z € X : f(z) € (a,00)}

={z € X : max(fi(2), f2(x)) € (a,0))
={zx € X : fi(z) € (a,0) V fa(z) € (a,00)}
=fi ' ((a,00)) U f3 '((a,00)) € FYa €R,

since unions of measurable sets are measurable (F is a o-algebra). Since the col-
lection of sets (a,00), a € R, generate the Borel o-algebra B, it follows that f is
(F, B)-measurable, i.e. F-measurable.
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1. We first prove the result for simple functions. So let s1 = > ;_; axxa, and
s2 = > 12, bixp,, where {A4;}; and {B;}; are partitions of the underlying space.! We
want to prove that [(s1+ s2) = [ 51+ [ so.

Since s1 + s2 = Y 1> eq(ar + b)xa,nB, we see that s; + so is also a simple
function, and thus

n m

/(81+82:Zzak+bl (AN B)
k=1 1=1
:Z Z (AN B)+ Y b Y m(A,NB)

k=1 =1 =1 k=1

2. We prove the result for measurable functions fi, fo : X — [0,00]. Pick two
increasing sequences of nonnegative simple functions {s.}, and {s2},, converging
pointwise to f; and fa, respectively. Then sl + s2 is a nonnegative sequence of
increasing simple functions converging to fi + f2. Thus we get, by the Monotone
Convergence Theorem and the corresponding result for simple functions, that

[ = [ehes= i ([ [2)= [a+ [

We first note that p(A) = [, ¢dm is well-defined and non-negative for all A € F
since ¢ is non-negative and JF-measurable.

Next we check that p is o-additive. If A = U2, A; with A;NA; =0 (i # j), then
1) pUzA) = [ odm= [ 3 o dm.
U,?ilAi X i=1

Define f, = Y i, ¢xa,. Obviously, {fn}nen is a non-decreasing sequence of non-
negative functions. Hence by (1) and the monotone convergence theorem,

(U2 A;) :/ hm frndm = lim frndm.
x"n X

n—oo

'In the note Measure and Probability, a simple function is defined to be a linear combination of charac-
teristic functions of disjoint sets {A;};. We can demand that {A;}; is a partition of X — meaning that in
addition to disjointness we have that UA; = X — since we can always add 0 - x,-1({0}) as a term without
changing the function.
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Now o-additivity follows from linearity of the integral since

n—oo X n—o0

:nli}n;o;/xgbxfgi dm
:;/Aimxm

= ZM(AJ
i=1

lim [ f,dm = lim / > dxa, dm
X =1

Since p(0) = 0, we then conclude that u(A) is a measure on (X, F).

@ a) We have ux (@) = P(X 1(2)) = P(@) =0 and also ux(A) = P(X~1(A)) >0
for every A € Bg since P is a measure. Lastly, if {A4;}22, C F are pairwise
disjoint, then

Fr AN R A) = FFHANA) =1 0) =0 for i #j,

and {f~1(A;)}32, is also pairwise disjoint. It follows that

er(0) o (2 (04)

again since P is a measure. So px is a measure on (R, Br). It is is a probability
measure since py (R) = P(X71(R)) = P(Q) = 1.

b) First suppose that f = x4 for some A € Br. We deduce that x40 X = XX-1(A)s
which yields

B(xa(X)) = /Q Y A(X(@))dP(w)

- /Q Xx-1()(@)dP(w)
— P(X"1(4))
= px(A)

- / xa(@)dpx (@)
R

By the linearity of the integral, this will also hold for all simple functions. Now
take any Bg-measurable f : Q — [0,00]. Then we can find a sequence (s,) of
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simple functions such that 0 < s, 1 f (pointwise everywhere!). Clearly this
also means that 0 < s, 0o X T f o X. By the above we have

B(sa(X)) = [

Q

Sp(X(w))dP(w) :/sn(m‘)d,ux(x)

R

for all n € N. Letting n — oo and using the monotone convergence theorem,
we obtain

E(f(X)) = /Q F(X(@)dP(w) = /R F(@)dpx (),

which is what we wanted to show.

(a) is simple: Since f, is 0 on the interval 2w, 1] and w, — 0, the variable w > 0
will not be in [2wy,, 1] when n is large enough. Thus the limit is 0 for all w-s. Clearly,
since g (w) = limy—y00 fr (w) = 0, also [ gdP = 0.

For (b) we observe that [ f,dP is the same as the familiar integral fol fn (W) dw.
For a,, = wg we obtain

(2wy) - 1

1
) | ey =g 22 g,

showing that the limit when n — co may be 0, 1, or co depending on the value of a.

In (c) the function h is a dominating function for all f,,-s and in fact the smallest
such function. If [ hdP < oo, h is integrable, and in that case (recalling the Lebesgue
Dominated Convergence Theorem) we must have

® [ (i o) e = i [ fuar
Thus, we conclude that [ hdP has to be co when a, = w, !, and wj, 2.

1/

Comment: For the first case, a, = wn 2, it is tempting to say that

(4) h (w) = max f, (W) < w2,

But this function is integrable, and fol w2dw = 2. Therefore, Eqn. 4 must be
wrong (why?). Challenge: Prove that an integrable majorant nevertheless exists by
finding a larger function, g, such that h (w) < g (w) and [ gdP < cc.

It could also be remarked that it is possible to find more complicated examples, with
similar functions, such that [ (limy,—e0 fn) dP = lim, s [ fndP even if there is no
integrable majorant.

(a) This, so-called monotone property of conditional expectation, follows easily by
utilizing the linearity and that X > 0 a.s. implies that E (X |H) > 0 a.s. (Property
5):

(5) Y-X>0= E(Y - X[H)=E(Y|H) - E(X|H)>0.
(b) From point (a) it follows that also {E (X,|H)} will be an increasing sequence,

(6) E(XaH) (w) < E(Xnp1[H) (W) as.
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Apart from a possible set of probability 0, we then know that

(7) E(XaH) (W) = Y (w) <00

n—oo
for some non-negative function Y. First of all, the Y function will be H-measurable
since it is a limit of H-measurable functions (this was mentioned briefly in the lectures
and is a general result from measure theory). Moreover, by applying the Monotone
Convergence Theorem to both sides of

(8) ‘/)E(Xgﬁﬁcu):b/_XﬁdP,f[e?t
H H

) /YW:/XM
H H
for all H € H. Thus, Y = E(X|H) a.s.

a) The RHS is the familiar (for some) probability density for a multivariate gaussian
variable X as long as the covariance matrix is non-singular.

Let y = ¥'/2u. The square root exists since ¥ is positive definite. Then d"y =
|21/2} d"u, where ‘21/2‘, the determinant of ¥/2, is the Jacobian of the transfor-

1/2

mation. Note also that u'u = y’X~"“u. By introducing this, we obtain

1 o 1
(10) @ /]Rn e " ¥exp <z’u'u - 2u’2u> d"u

1 1 R 1 n
=g S| /Rn exp <Zy’2 V2 (- x) - 2y’y> d"y
(12 = 1 va— Sy'y | dy, a=%"2(u—x)
- (27T)n ‘21/2‘ . exXp |y 2y y Y, - }UJ X).

The integral now splits into a product of n one-dimensional integrals of the form
fR exp (z’ya — %yQ) dy, which can be found by observing that

1
(13) / exp <iya — y2> dy
R 2

2 [ ia —1y)?
(14) = ea2/ exp (_(2y)> dy

s=(y—ia) a2 [° —s2/2 5 _a®
(15) = ‘e 2 e ds = V2me™ 2

—00

(We are integrating an analytic function in the complex plane along a path parallel
to the y-axis. The contributions from the connecting paths at both ends vanish.
Therefore,

oo o
(16) / exp (— (ia — y)* /2) dy = / exp (—y?/2) dy = V2r

—0o0 —0o0

for all real a-s).
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Finally,

2 1

a7) I (3 ) = L) B k),
k=1

which is just what we need.

(b) Proof of (i): This is rather surprising since it holds regardless the variables
are independent or not! The proof is simple if we use the series expansion for the
characteristic function,

(18) Lysu) =1- Lus +1 Ly 2+
exXp 2uu- 2uu22uu s

and the formula

o

1 E(X{XoX3)=i>—F
(9) ( 142 3) ! BulauQﬁug

(0).

Observe that the third term in Eqn. 18 contains a product of 4 u-components and
all later terms contain even more than that. At the end we are going to put all
u-components equal to zero. After three derivations, the third term and all later
terms will either already be 0, or have remaining u-components and will be 0 for
u = 0. The derivatives of the second term are all of the form

0% (ujuy)

2 1% )
( O) g J 6u16u28U3

and are all equal to 0 as well.

Proof of (ii):
In this case, we need to take four derivatives,
0%

21 E(X1XoX3Xy) = ——F7—7——
( ) ( 14223 4) 8u18uQ8U38u4 (0)7

and all terms in the expansion in Eqn. 18 will vanish, apart from some of the
derivatives of the third term. The third term may be written as

4
(22) § OijOklU; Uj UK UL,
k=1

| —
-

and we see that

8u18uQ6U38u4

will be non-zero only if all four components in the numerator are different. Since
0;j = 0j;, there will be 8 such terms for 012034, and likewise, 8 terms for o13024 and
014023. This makes up the identity.

For info: The cumulants are coefficients in the Taylor expansion of log (¢ (u)). The

main k-th order cumulant is the coefficient in front of the %ul - Ug - Uy -term of
the multidimensional Taylor expansion. Since the Taylor expansion of log (¢ (u)) for
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multivariate Gaussian variables is simply log (¢ (u)) = iu’y — u/Su, all cumulants
larger that the second vanish. The fourth cumulant is in general

(24)

ke = E (X1 XoX3X4)—FE (X1X2) E(X3X4)—E (X1X3) E(X2X4)—E (X1X4) E (X2X3),

hence the name of the identity. The identity is useful in all situations involving
Gaussian signals.
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