

MA8109 Stochastic Processes in Systems Theory Autumn 2013

Exercise set 1 – solutions

- $\begin{array}{|c|c|c|c|c|} \hline 1 & \mathbf{a} \end{pmatrix} x \in (A \cap B)^c \Leftrightarrow x \notin A \cap B \Leftrightarrow x \notin A \text{ and } x \notin B \Leftrightarrow x \in A^c \text{ and } x \in B^c \Leftrightarrow x \in A^c \cap B^c \\ & A^c \cap B^c \end{array}$
 - **b)** $x \in (\bigcup_i A_i)^c \Leftrightarrow x \notin \bigcup_i A_i \Leftrightarrow x \notin A_i \text{ for all } i \Leftrightarrow x \in A_i^c \text{ for all } i \Leftrightarrow x \in \bigcup_i A_i^c$
 - c) $x \in f^{-1}(A^c) \Leftrightarrow f(x) \in A^c \Leftrightarrow f(x) \notin A \Leftrightarrow x \notin f^{-1}(A) \Leftrightarrow x \in f^{-1}(A)^c$
 - **d)** $x \in f^{-1}(\bigcup_i A_i) \Leftrightarrow f(x) \in \bigcup_i A_i \Leftrightarrow f(x) \in A_i \text{ for all } i \Leftrightarrow x \in f^{-1}(A_i) \text{ for all } i \Leftrightarrow x \in \bigcup_i f^{-1}(A_i)$
- 2 a) Note that $X = A \cup B \cup (A \cup B)^c$ and this union is disjoint since $A \cap B = \emptyset$. $\mathcal{F}_{\{A,B\}} = \{\emptyset, A, B, (A \cup B)^c, A \cup B, A \cup (A \cup B)^c, B \cup (A \cup B)^c, X\}$
 - b) Since any subset of \mathbb{N} is a countable union of elements of \mathcal{A} , it follows that $\mathcal{F}_{\mathcal{A}} = \mathcal{P}(\mathbb{N})$, the set of all subsets of \mathbb{N} .
- **3** It is enough to check all axioms: \emptyset and Ω are in all \mathcal{H}_i -s, and hence in \mathcal{H} . If $A \in \mathcal{H}$, then A (and A^C !) is in all \mathcal{H}_i -s, therefore $A^C \in \mathcal{H}$. For the last axiom, we observe that if $\{A_n\}$ is in \mathcal{H} , then it is in all \mathcal{H}_i and so will the limit A be since all \mathcal{H}_i -s are σ -algebras. But then $A \in \mathcal{H}$.
- **4** a) Since $A_1 \subset A_2$, $A_2 = A_1 \cup (A_2 \cap A_1^c)$, a union of disjoint measurable sets. By using the definition of a measure (σ -additivity) we may conclude the following:

$$m(A_2) = m(A_1 \cup (A_2 \cap A_1^c)) = m(A_1) + \underbrace{m(A_2 \cap A_1^c)}_{\ge 0} \ge m(A_1).$$

b) We would now like to show that $m(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} m(A_i)$. To do this we define the following disjoint sets B_i :

$$B_1 = A_1,$$

$$B_2 = A_2 \setminus A_1,$$

$$B_3 = A_3 \setminus (A_1 \cup A_2),$$

$$\vdots$$

$$B_k = A_k \setminus \left(\bigcup_{i=1}^{k-1} A_i\right).$$

We first show by induction that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$. Trivially, $A_1 = B_1$. Now assume $\bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i$ for some $k \in \mathbb{N}$ and check if the same holds for k+1,

$$\left(\bigcup_{i=1}^{k} B_{i}\right) \cup B_{k+1} = \left(\bigcup_{i=1}^{k} A_{i}\right) \cup B_{k+1},$$
$$\bigcup_{i=1}^{k+1} B_{i} = \left(\bigcup_{i=1}^{k} A_{i}\right) \cup \left(A_{k+1} \setminus \left(\bigcup_{i=1}^{k} A_{i}\right)\right) = \bigcup_{i=1}^{k+1} A_{i}.$$

This leads to

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) = m\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} m(B_i) \le \sum_{i=1}^{\infty} m(A_i),$$

since $B_i \subset A_i$ and thus $m(B_i) \leq m(A_i)$ as shown in a).

c) Assuming $A_1 \subset A_2 \subset A_3 \subset \ldots$ and $A = \bigcup_{i=1}^{\infty} A_i$, we want to show that $m(A) = \lim_{i \to \infty} m(A_i)$. If we construct disjoint sets B_i like in b), the following holds:

$$m\left(\bigcup_{i=1}^{n} B_i\right) = m(A_n)$$

for all $n \in \mathbb{N}$. By using the definition of A and the fact that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$ we get:

$$m(A) = m\left(\bigcup_{i=1}^{\infty} A_i\right) = m\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} m(B_i)$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} m(B_i) = \lim_{n \to \infty} m\left(\bigcup_{i=1}^{n} B_i\right) = \lim_{n \to \infty} m(A_n)$$

5 Let m_L be the Lebesgue measure on \mathbb{R} and let $\epsilon > 0$. Let $\{q_n\}_{n \in \mathbb{N}}$ be a sequence of the elements in \mathbb{Q} . Define the open intervals $A_n = (q_n - 2^{-n}\epsilon, q_n + 2^{-n}\epsilon)$. Notice that $\mathbb{Q} \subset \bigcup_{n \in \mathbb{N}} A_n$, thus

$$m_L(\mathbb{Q}) \le m_L(\cup_{n\in\mathbb{N}}A_n) \le \sum_{n\in\mathbb{N}}m_L(A_n) = \sum_{n\in\mathbb{N}}\frac{\epsilon}{2^n} = \epsilon.$$

Since ϵ is chosen arbitrarily small, we have $m_L(\mathbb{Q}) = 0$.

6 Assuming f_1 , f_2 are \mathcal{F} -measurable, we know

$$f_1^{-1}((a,\infty)) \in \mathcal{F} \text{ and } f_2^{-1}((a,\infty)) \in \mathcal{F}, \forall a \in \mathbb{R}.$$

From this, we find that

$$f^{-1}((a,\infty)) = \{x \in X : f(x) \in (a,\infty)\} \\ = \{x \in X : \max(f_1(x), f_2(x)) \in (a,\infty)) \\ = \{x \in X : f_1(x) \in (a,\infty) \lor f_2(x) \in (a,\infty)\} \\ = f_1^{-1}((a,\infty)) \cup f_2^{-1}((a,\infty)) \in \mathcal{F} \forall a \in \mathbb{R},$$

since unions of measurable sets are measurable (\mathcal{F} is a σ -algebra). Since the collection of sets (a, ∞) , $a \in \mathbb{R}$, generate the Borel σ -algebra \mathcal{B} , it follows that f is $(\mathcal{F}, \mathcal{B})$ -measurable, i.e. \mathcal{F} -measurable.

7 1. We first prove the result for simple functions. So let $s_1 = \sum_{k=1}^n a_k \chi_{A_k}$ and $s_2 = \sum_{l=1}^m b_l \chi_{B_l}$, where $\{A_i\}_i$ and $\{B_i\}_i$ are partitions of the underlying space.¹ We want to prove that $\int (s_1 + s_2) = \int s_1 + \int s_2$.

Since $s_1 + s_2 = \sum_{k=1}^n \sum_{l=1}^m (a_k + b_l) \chi_{A_k \cap B_l}$ we see that $s_1 + s_2$ is also a simple function, and thus

$$\int (s_1 + s_2) = \sum_{k=1}^n \sum_{l=1}^m (a_k + b_l) m(A_k \cap B_l)$$

= $\sum_{k=1}^n a_k \sum_{l=1}^m m(A_k \cap B_l) + \sum_{l=1}^m b_l \sum_{k=1}^n m(A_k \cap B_l)$
= $\sum_{k=1}^n a_k m(A_k) + \sum_{l=1}^m b_l m(B_l)$
= $\int s_1 + \int s_2.$

2. We prove the result for measurable functions $f_1, f_2 : X \to [0, \infty]$. Pick two increasing sequences of nonnegative simple functions $\{s_n^1\}_n$ and $\{s_n^2\}_n$ converging pointwise to f_1 and f_2 , respectively. Then $s_n^1 + s_n^2$ is a nonnegative sequence of increasing simple functions converging to $f_1 + f_2$. Thus we get, by the Monotone Convergence Theorem and the corresponding result for simple functions, that

$$\int (f_1 + f_2) = \lim_{n \to \infty} \int (s_n^1 + s_n^2) = \lim_{n \to \infty} \left(\int s_n^1 + \int s_n^2 \right) = \int f_1 + \int f_2.$$

8 We first note that $\mu(A) = \int_A \phi \, dm$ is well-defined and non-negative for all $A \in \mathcal{F}$ since ϕ is non-negative and \mathcal{F} -measurable.

Next we check that μ is σ -additive. If $A = \bigcup_{i=1}^{\infty} A_i$ with $A_i \cap A_j = \emptyset$ $(i \neq j)$, then

(1)
$$\mu(\bigcup_{i=1}^{\infty} A_i) = \int_{\bigcup_{i=1}^{\infty} A_i} \phi \, dm = \int_X \sum_{i=1}^{\infty} \phi \chi_{A_i} \, dm.$$

Define $f_n = \sum_{i=1}^n \phi \chi_{A_i}$. Obviously, $\{f_n\}_{n \in \mathbb{N}}$ is a non-decreasing sequence of non-negative functions. Hence by (1) and the monotone convergence theorem,

$$\mu(\cup_{i=1}^{\infty} A_i) = \int_X \lim_{n \to \infty} f_n \, dm = \lim_{n \to \infty} \int_X f_n \, dm.$$

¹In the note *Measure and Probability*, a simple function is defined to be a linear combination of characteristic functions of disjoint sets $\{A_i\}_i$. We can demand that $\{A_i\}_i$ is a partition of X – meaning that in addition to disjointness we have that $\cup A_i = X$ – since we can always add $0 \cdot \chi_{s^{-1}(\{0\})}$ as a term without changing the function.

Now σ -additivity follows from linearity of the integral since

$$\lim_{n \to \infty} \int_X f_n \, dm = \lim_{n \to \infty} \int_X \sum_{i=1}^n \phi \chi_{A_i} \, dm$$
$$= \lim_{n \to \infty} \sum_{i=1}^n \int_X \phi \chi_{A_i} \, dm$$
$$= \sum_{i=1}^\infty \int_{A_i} \phi \, dm$$
$$= \sum_{i=1}^\infty \mu(A_i).$$

Since $\mu(\emptyset) = 0$, we then conclude that $\mu(A)$ is a measure on (X, \mathcal{F}) .

9 a) We have $\mu_X(\emptyset) = P(X^{-1}(\emptyset)) = P(\emptyset) = 0$ and also $\mu_X(A) = P(X^{-1}(A)) \ge 0$ for every $A \in \mathcal{B}_{\mathbb{R}}$ since P is a measure. Lastly, if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ are pairwise disjoint, then

$$f^{-1}(A_i) \cap f^{-1}(A_j) = f^{-1}(A_i \cap A_j) = f^{-1}(\emptyset) = \emptyset \text{ for } i \neq j,$$

and $\{f^{-1}(A_i)\}_{i=1}^{\infty}$ is also pairwise disjoint. It follows that

$$\mu_X \left(\bigsqcup_{i=1}^{\infty} A_i \right) = P \left(X^{-1} \left(\bigsqcup_{i=1}^{\infty} A_i \right) \right)$$
$$= P \left(\bigsqcup_{i=1}^{\infty} X^{-1}(A_i) \right)$$
$$= \sum_{i=1}^{\infty} P(X^{-1}(A_i))$$
$$= \sum_{i=1}^{\infty} \mu_X(A_i),$$

again since P is a measure. So μ_X is a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. It is a probability measure since $\mu_X(\mathbb{R}) = P(X^{-1}(\mathbb{R})) = P(\Omega) = 1$.

b) First suppose that $f = \chi_A$ for some $A \in \mathcal{B}_{\mathbb{R}}$. We deduce that $\chi_A \circ X = \chi_{X^{-1}(A)}$, which yields

$$E(\chi_A(X)) = \int_{\Omega} \chi_A(X(\omega)) dP(\omega)$$

=
$$\int_{\Omega} \chi_{X^{-1}(A)}(\omega) dP(\omega)$$

=
$$P(X^{-1}(A))$$

=
$$\mu_X(A)$$

=
$$\int_{\mathbb{R}} \chi_A(x) d\mu_X(x).$$

By the linearity of the integral, this will also hold for all simple functions. Now take any $\mathcal{B}_{\mathbb{R}}$ -measurable $f : \Omega \to [0, \infty]$. Then we can find a sequence (s_n) of

simple functions such that $0 \leq s_n \uparrow f$ (pointwise everywhere!). Clearly this also means that $0 \leq s_n \circ X \uparrow f \circ X$. By the above we have

$$E(s_n(X)) = \int_{\Omega} s_n(X(\omega)) dP(\omega) = \int_{\mathbb{R}} s_n(x) d\mu_X(x)$$

for all $n \in \mathbb{N}$. Letting $n \to \infty$ and using the monotone convergence theorem, we obtain

$$E(f(X)) = \int_{\Omega} f(X(\omega))dP(\omega) = \int_{\mathbb{R}} f(x)d\mu_X(x),$$

which is what we wanted to show.

(10) (a) is simple: Since f_n is 0 on the interval $[2\omega_n, 1]$ and $\omega_n \to 0$, the variable $\omega > 0$ will not be in $[2\omega_n, 1]$ when n is large enough. Thus the limit is 0 for all ω -s. Clearly, since $g(\omega) = \lim_{n\to\infty} f_n(\omega) = 0$, also $\int g dP = 0$.

For (b) we observe that $\int f_n dP$ is the same as the familiar integral $\int_0^1 f_n(\omega) d\omega$. For $a_n = \omega_n^{\alpha}$ we obtain

(2)
$$\int_0^1 f_n(\omega) \, d\omega = \omega_n^{\alpha} \cdot \frac{(2\omega_n) \cdot 1}{2} = \omega_n^{\alpha+1},$$

showing that the limit when $n \to \infty$ may be 0, 1, or ∞ depending on the value of α . In (c) the function h is a dominating function for all f_n -s and in fact the smallest such function. If $\int h dP < \infty$, h is integrable, and in that case (recalling the Lebesgue Dominated Convergence Theorem) we *must* have

(3)
$$\int \left(\lim_{n \to \infty} f_n\right) dP = \lim_{n \to \infty} \int f_n dP.$$

Thus, we conclude that $\int h dP$ has to be ∞ when $a_n = \omega_n^{-1}$, and ω_n^{-2} . Comment: For the first case, $a_n = \omega_n^{-1/2}$, it is tempting to say that

(4)
$$h(\omega) = \max_{n} f_n(\omega) \le \omega^{-1/2}.$$

But this function is integrable, and $\int_0^1 \omega^{-1/2} d\omega = 2$. Therefore, Eqn. 4 must be wrong (why?). *Challenge:* Prove that an integrable majorant nevertheless exists by finding a larger function, g, such that $h(\omega) < g(\omega)$ and $\int g dP < \infty$.

It could also be remarked that it is possible to find more complicated examples, with similar functions, such that $\int (\lim_{n\to\infty} f_n) dP = \lim_{n\to\infty} \int f_n dP$ even if there is no integrable majorant.

(a) This, so-called *monotone property* of conditional expectation, follows easily by utilizing the linearity and that $X \ge 0$ a.s. implies that $E(X|\mathcal{H}) \ge 0$ a.s. (Property 5):

(5)
$$Y - X \ge 0 \Longrightarrow E(Y - X|\mathcal{H}) = E(Y|\mathcal{H}) - E(X|\mathcal{H}) \ge 0.$$

(b) From point (a) it follows that also $\{E(X_n|\mathcal{H})\}$ will be an increasing sequence,

(6) $E(X_n|\mathcal{H})(\omega) \le E(X_{n+1}|\mathcal{H})(\omega) \text{ a.s.}$

Apart from a possible set of probability 0, we then know that

(7)
$$E(X_n|\mathcal{H})(\omega) \xrightarrow[n \to \infty]{} Y(\omega) \le \infty$$

for some non-negative function Y. First of all, the Y function will be \mathcal{H} -measurable since it is a limit of \mathcal{H} -measurable functions (this was mentioned briefly in the lectures and is a general result from measure theory). Moreover, by applying the Monotone Convergence Theorem to *both* sides of

(8)
$$\int_{H} E(X_{n}|\mathcal{H}) dP = \int_{H} X_{n} dP, \ H \in \mathcal{H},$$

we have

(9)
$$\int_{H} Y dP = \int_{H} X dP$$

for all $H \in \mathcal{H}$. Thus, $Y = E(X|\mathcal{H})$ a.s.

12 a) The RHS is the familiar (for some) probability density for a multivariate gaussian variable **X** as long as the covariance matrix is non-singular.

Let $\mathbf{y} = \mathbf{\Sigma}^{1/2} \mathbf{u}$. The square root exists since $\mathbf{\Sigma}$ is positive definite. Then $d^n y = |\mathbf{\Sigma}^{1/2}| d^n u$, where $|\mathbf{\Sigma}^{1/2}|$, the determinant of $\mathbf{\Sigma}^{1/2}$, is the *Jacobian* of the transformation. Note also that $\mathbf{u}' \mu = \mathbf{y}' \mathbf{\Sigma}^{-1/2} \mu$. By introducing this, we obtain

(10)
$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\mathbf{u}'\mathbf{x}} \exp\left(i\mathbf{u}'\mu - \frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}\right) d^n u$$

(11)
$$= \frac{1}{\left(2\pi\right)^{n}} \frac{1}{\left|\boldsymbol{\Sigma}^{1/2}\right|} \int_{\mathbb{R}^{n}} \exp\left(i\mathbf{y}'\boldsymbol{\Sigma}^{-1/2}\left(\boldsymbol{\mu}-\mathbf{x}\right) - \frac{1}{2}\mathbf{y}'\mathbf{y}\right) d^{n}y$$

(12)
$$= \frac{1}{(2\pi)^n} \frac{1}{|\mathbf{\Sigma}^{1/2}|} \int_{\mathbb{R}^n} \exp\left(i\mathbf{y'a} - \frac{1}{2}\mathbf{y'y}\right) d^n y, \quad \mathbf{a} = \mathbf{\Sigma}^{-1/2} \left(\mu - \mathbf{x}\right).$$

The integral now splits into a product of n one-dimensional integrals of the form $\int_{\mathbb{R}} \exp\left(iya - \frac{1}{2}y^2\right) dy$, which can be found by observing that

(13)
$$\int_{\mathbb{R}} \exp\left(iya - \frac{1}{2}y^2\right) dy$$

(14)
$$= e^{-\frac{a^2}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{(ia-y)^2}{2}\right) dy$$

(15)
$$\sum_{s=(y-ia)}^{s=(y-ia)} e^{-\frac{a^2}{2}} \int_{-\infty}^{\infty} e^{-s^2/2} ds = \sqrt{2\pi} e^{-\frac{a^2}{2}}$$

(We are integrating an analytic function in the complex plane along a path parallel to the y-axis. The contributions from the connecting paths at both ends vanish. Therefore,

(16)
$$\int_{-\infty}^{\infty} \exp\left(-\left(ia - y\right)^2/2\right) dy = \int_{-\infty}^{\infty} \exp\left(-y^2/2\right) dy = \sqrt{2\pi}$$

for all real a-s).

Finally,

(17)
$$\frac{|\mathbf{a}|^2}{2} = \frac{1}{2} \sum_{k=1}^n \left(\boldsymbol{\Sigma}^{-1/2} \left(\boldsymbol{\mu} - \mathbf{x} \right) \right)_k^2 = \frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu} \right)' \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right),$$

which is just what we need.

(b) *Proof of (i)*: This is rather surprising since it holds *regardless* the variables are independent or not! The proof is simple if we use the series expansion for the characteristic function,

(18)
$$\exp\left(-\frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}\right) = 1 - \frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u} + \frac{1}{2}\left(\frac{1}{2}\mathbf{u}'\boldsymbol{\Sigma}\mathbf{u}\right)^2 + \cdots,$$

and the formula

(19)
$$E(X_1X_2X_3) = i^3 \frac{\partial^3 \phi}{\partial u_1 \partial u_2 \partial u_3} (\mathbf{0}).$$

Observe that the third term in Eqn. 18 contains a product of 4 *u*-components and all later terms contain even more than that. At the end we are going to put all *u*-components equal to zero. After three derivations, the third term and all later terms will either already be 0, or have remaining *u*-components and will be 0 for $\mathbf{u} = \mathbf{0}$. The derivatives of the second term are all of the form

(20)
$$\sigma_{ij} \frac{\partial^3 \left(u_i u_j \right)}{\partial u_1 \partial u_2 \partial u_3},$$

and are all equal to $0\ \mathrm{as}$ well.

Proof of (ii):

In this case, we need to take four derivatives,

(21)
$$E(X_1X_2X_3X_4) = \frac{\partial^4\phi}{\partial u_1\partial u_2\partial u_3\partial u_4}(\mathbf{0}),$$

and all terms in the expansion in Eqn. 18 will vanish, apart from some of the derivatives of the third term. The third term may be written as

(22)
$$\frac{1}{8} \sum_{i,j,k,l=1}^{4} \sigma_{ij} \sigma_{kl} u_i u_j u_k u_l,$$

and we see that

(23)
$$\frac{\partial^4 \left(u_i u_j u_k u_l \right)}{\partial u_1 \partial u_2 \partial u_3 \partial u_4}$$

will be non-zero *only* if all four components in the numerator are different. Since $\sigma_{ij} = \sigma_{ji}$, there will be 8 such terms for $\sigma_{12}\sigma_{34}$, and likewise, 8 terms for $\sigma_{13}\sigma_{24}$ and $\sigma_{14}\sigma_{23}$. This makes up the identity.

For info: The cumulants are coefficients in the Taylor expansion of $\log (\phi(\mathbf{u}))$. The main k-th order cumulant is the coefficient in front of the $\frac{i^k}{k!}u_1 \cdot u_2 \cdots u_n$ -term of the multidimensional Taylor expansion. Since the Taylor expansion of $\log (\phi(\mathbf{u}))$ for

multivariate Gaussian variables is simply $\log (\phi(\mathbf{u})) = i\mathbf{u}'\mu - \frac{1}{2}\mathbf{u}'\Sigma\mathbf{u}$, all cumulants larger that the second vanish. The fourth cumulant is in general (24)

 $\kappa_{4} = E(X_{1}X_{2}X_{3}X_{4}) - E(X_{1}X_{2}) E(X_{3}X_{4}) - E(X_{1}X_{3}) E(X_{2}X_{4}) - E(X_{1}X_{4}) E(X_{2}X_{3}),$

hence the name of the identity. The identity is useful in all situations involving Gaussian signals.