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Exercise set 1 – solutions

1 a) x ∈ (A ∩ B)c ⇔ x 6∈ A ∩ B ⇔ x 6∈ A and x 6∈ B ⇔ x ∈ Ac and x ∈ Bc ⇔ x ∈
Ac ∩Bc

b) x ∈ (
⋃
iAi)

c ⇔ x 6∈
⋃
iAi ⇔ x 6∈ Ai for all i⇔ x ∈ Aci for all i⇔ x ∈

⋃
iA

c
i

c) x ∈ f−1(Ac)⇔ f(x) ∈ Ac ⇔ f(x) 6∈ A⇔ x 6∈ f−1(A)⇔ x ∈ f−1(A)c

d) x ∈ f−1(
⋃
iAi)⇔ f(x) ∈

⋃
iAi ⇔ f(x) ∈ Ai for all i⇔ x ∈ f−1(Ai) for all i⇔

x ∈
⋃
i f
−1(Ai)

2 a) Note that X = A ∪ B ∪ (A ∪ B)c and this union is disjoint since A ∩ B = ∅.
F{A,B} = {∅, A,B, (A ∪B)c, A ∪B,A ∪ (A ∪B)c, B ∪ (A ∪B)c, X}

b) Since any subset of N is a countable union of elements of A, it follows that
FA = P(N), the set of all subsets of N.

3 It is enough to check all axioms: ∅ and Ω are in all Hi-s , and hence in H. If A ∈ H,
then A (and AC !) is in all Hi-s, therefore AC ∈ H. For the last axiom, we observe
that if {An} is in H, then it is in all Hi and so will the limit A be since all Hi-s are
σ-algebras . But then A ∈ H.

4 a) Since A1 ⊂ A2, A2 = A1 ∪ (A2 ∩ Ac1), a union of disjoint measurable sets. By
using the definition of a measure (σ-additivity) we may conclude the following:

m(A2) = m(A1 ∪ (A2 ∩Ac1)) = m(A1) +m(A2 ∩Ac1)︸ ︷︷ ︸
≥0

≥ m(A1).

b) We would now like to show that m (
⋃∞
i=1Ai) ≤

∑∞
i=1m(Ai). To do this we define

the following disjoint sets Bi:

B1 = A1,

B2 = A2 \A1,

B3 = A3 \ (A1 ∪A2),

...

Bk = Ak \

(
k−1⋃
i=1

Ai

)
.

We first show by induction that
⋃∞
i=1Ai =

⋃∞
i=1Bi. Trivially, A1 = B1. Now assume⋃k

i=1Ai =
⋃k
i=1Bi for some k ∈ N and check if the same holds for k + 1,
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(
k⋃
i=1

Bi

)
∪Bk+1 =

(
k⋃
i=1

Ai

)
∪Bk+1,

k+1⋃
i=1

Bi =

(
k⋃
i=1

Ai

)
∪

(
Ak+1 \

(
k⋃
i=1

Ai

))
=

k+1⋃
i=1

Ai.

This leads to

m

( ∞⋃
i=1

Ai

)
= m

( ∞⋃
i=1

Bi

)
=
∞∑
i=1

m(Bi) ≤
∞∑
i=1

m(Ai),

since Bi ⊂ Ai and thus m(Bi) ≤ m(Ai) as shown in a).

c) Assuming A1 ⊂ A2 ⊂ A3 ⊂ . . . and A =
⋃∞
i=1Ai, we want to show that m(A) =

limi→∞m(Ai). If we construct disjoint sets Bi like in b), the following holds:

m

(
n⋃
i=1

Bi

)
= m(An)

for all n ∈ N. By using the definition of A and the fact that
⋃∞
i=1Ai =

⋃∞
i=1Bi we

get:

m(A) = m

( ∞⋃
i=1

Ai

)
= m

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

m(Bi)

= lim
n→∞

n∑
i=1

m(Bi) = lim
n→∞

m

(
n⋃
i=1

Bi

)
= lim

n→∞
m(An).

5 Let mL be the Lebesgue measure on R and let ε > 0. Let {qn}n∈N be a sequence
of the elements in Q. Define the open intervals An = (qn − 2−nε, qn + 2−nε). Notice
that Q ⊂ ∪n∈NAn, thus

mL(Q) ≤ mL(∪n∈NAn) ≤
∑
n∈N

mL(An) =
∑
n∈N

ε

2n
= ε.

Since ε is chosen arbitrarily small, we have mL(Q) = 0.

6 Assuming f1, f2 are F-measurable, we know

f−1
1 ((a,∞)) ∈ F and f−1

2 ((a,∞)) ∈ F , ∀ a ∈ R.

From this, we find that

f−1((a,∞)) ={x ∈ X : f(x) ∈ (a,∞)}
={x ∈ X : max(f1(x), f2(x)) ∈ (a,∞))

={x ∈ X : f1(x) ∈ (a,∞) ∨ f2(x) ∈ (a,∞)}
=f−1

1 ((a,∞)) ∪ f−1
2 ((a,∞)) ∈ F ∀ a ∈ R,

since unions of measurable sets are measurable (F is a σ-algebra). Since the col-
lection of sets (a,∞), a ∈ R, generate the Borel σ-algebra B, it follows that f is
(F ,B)-measurable, i.e. F-measurable.
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7 1. We first prove the result for simple functions. So let s1 =
∑n

k=1 akχAk
and

s2 =
∑m

l=1 blχBl
, where {Ai}i and {Bi}i are partitions of the underlying space.1 We

want to prove that
∫

(s1 + s2) =
∫
s1 +

∫
s2.

Since s1 + s2 =
∑n

k=1

∑m
l=1(ak + bl)χAk∩Bl

we see that s1 + s2 is also a simple
function, and thus

∫
(s1 + s2) =

n∑
k=1

m∑
l=1

(ak + bl)m(Ak ∩Bl)

=

n∑
k=1

ak

m∑
l=1

m(Ak ∩Bl) +

m∑
l=1

bl

n∑
k=1

m(Ak ∩Bl)

=

n∑
k=1

akm(Ak) +

m∑
l=1

blm(Bl)

=

∫
s1 +

∫
s2.

2. We prove the result for measurable functions f1, f2 : X → [0,∞]. Pick two
increasing sequences of nonnegative simple functions {s1

n}n and {s2
n}n converging

pointwise to f1 and f2, respectively. Then s1
n + s2

n is a nonnegative sequence of
increasing simple functions converging to f1 + f2. Thus we get, by the Monotone
Convergence Theorem and the corresponding result for simple functions, that∫

(f1 + f2) = lim
n→∞

∫
(s1
n + s2

n) = lim
n→∞

(∫
s1
n +

∫
s2
n

)
=

∫
f1 +

∫
f2.

8 We first note that µ(A) =
∫
A φdm is well-defined and non-negative for all A ∈ F

since φ is non-negative and F-measurable.

Next we check that µ is σ-additive. If A = ∪∞i=1Ai with Ai ∩Aj = ∅ (i 6= j), then

(1) µ(∪∞i=1Ai) =

∫
∪∞i=1Ai

φdm =

∫
X

∞∑
i=1

φχAi dm.

Define fn =
∑n

i=1 φχAi . Obviously, {fn}n∈N is a non-decreasing sequence of non-
negative functions. Hence by (1) and the monotone convergence theorem,

µ(∪∞i=1Ai) =

∫
X

lim
n→∞

fn dm = lim
n→∞

∫
X
fn dm.

1In the note Measure and Probability, a simple function is defined to be a linear combination of charac-
teristic functions of disjoint sets {Ai}i. We can demand that {Ai}i is a partition of X – meaning that in
addition to disjointness we have that ∪Ai = X – since we can always add 0 · χs−1({0}) as a term without
changing the function.
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Now σ-additivity follows from linearity of the integral since

lim
n→∞

∫
X
fn dm = lim

n→∞

∫
X

n∑
i=1

φχAi dm

= lim
n→∞

n∑
i=1

∫
X
φχAi dm

=
∞∑
i=1

∫
Ai

φdm

=
∞∑
i=1

µ(Ai).

Since µ(∅) = 0, we then conclude that µ(A) is a measure on (X,F).

9 a) We have µX(∅) = P (X−1(∅)) = P (∅) = 0 and also µX(A) = P (X−1(A)) ≥ 0
for every A ∈ BR since P is a measure. Lastly, if {Ai}∞i=1 ⊆ F are pairwise
disjoint, then

f−1(Ai) ∩ f−1(Aj) = f−1(Ai ∩Aj) = f−1(∅) = ∅ for i 6= j,

and {f−1(Ai)}∞i=1 is also pairwise disjoint. It follows that

µX

( ∞⊔
i=1

Ai

)
= P

(
X−1

( ∞⊔
i=1

Ai

))

= P

( ∞⊔
i=1

X−1(Ai)

)

=

∞∑
i=1

P (X−1(Ai))

=

∞∑
i=1

µX(Ai),

again since P is a measure. So µX is a measure on (R,BR). It is is a probability
measure since µX(R) = P (X−1(R)) = P (Ω) = 1.

b) First suppose that f = χA for some A ∈ BR. We deduce that χA◦X = χX−1(A),
which yields

E(χA(X)) =

∫
Ω
χA(X(ω))dP (ω)

=

∫
Ω
χX−1(A)(ω)dP (ω)

= P (X−1(A))

= µX(A)

=

∫
R
χA(x)dµX(x).

By the linearity of the integral, this will also hold for all simple functions. Now
take any BR-measurable f : Ω → [0,∞]. Then we can find a sequence (sn) of
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simple functions such that 0 ≤ sn ↑ f (pointwise everywhere!). Clearly this
also means that 0 ≤ sn ◦X ↑ f ◦X. By the above we have

E(sn(X)) =

∫
Ω
sn(X(ω))dP (ω) =

∫
R
sn(x)dµX(x)

for all n ∈ N. Letting n → ∞ and using the monotone convergence theorem,
we obtain

E(f(X)) =

∫
Ω
f(X(ω))dP (ω) =

∫
R
f(x)dµX(x),

which is what we wanted to show.

10 (a) is simple: Since fn is 0 on the interval [2ωn, 1] and ωn → 0, the variable ω > 0
will not be in [2ωn, 1] when n is large enough. Thus the limit is 0 for all ω-s. Clearly,
since g (ω) = limn→∞ fn (ω) = 0, also

∫
gdP = 0.

For (b) we observe that
∫
fndP is the same as the familiar integral

∫ 1
0 fn (ω) dω.

For an = ωαn we obtain

(2)

∫ 1

0
fn (ω) dω = ωαn ·

(2ωn) · 1
2

= ωα+1
n ,

showing that the limit when n→∞ may be 0, 1, or∞ depending on the value of α.

In (c) the function h is a dominating function for all fn-s and in fact the smallest
such function. If

∫
hdP <∞, h is integrable, and in that case (recalling the Lebesgue

Dominated Convergence Theorem) we must have

(3)

∫ (
lim
n→∞

fn

)
dP = lim

n→∞

∫
fndP.

Thus, we conclude that
∫
hdP has to be ∞ when an = ω−1

n , and ω−2
n .

Comment : For the first case, an = ω
−1/2
n , it is tempting to say that

(4) h (ω) = max
n

fn (ω) ≤ ω−1/2.

But this function is integrable, and
∫ 1

0 ω
−1/2dω = 2. Therefore, Eqn. 4 must be

wrong (why?). Challenge: Prove that an integrable majorant nevertheless exists by
finding a larger function, g, such that h (ω) < g (ω) and

∫
gdP <∞.

It could also be remarked that it is possible to find more complicated examples, with
similar functions, such that

∫
(limn→∞ fn) dP = limn→∞

∫
fndP even if there is no

integrable majorant.

11 (a) This, so-called monotone property of conditional expectation, follows easily by
utilizing the linearity and that X ≥ 0 a.s. implies that E (X|H) ≥ 0 a.s. (Property
5):

(5) Y −X ≥ 0 =⇒ E (Y −X|H) = E (Y |H)− E (X|H) ≥ 0.

(b) From point (a) it follows that also {E (Xn|H)} will be an increasing sequence,

(6) E (Xn|H) (ω) ≤ E (Xn+1|H) (ω) a.s.
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Apart from a possible set of probability 0, we then know that

(7) E (Xn|H) (ω) →
n→∞

Y (ω) ≤ ∞

for some non-negative function Y . First of all, the Y function will be H-measurable
since it is a limit ofH-measurable functions (this was mentioned briefly in the lectures
and is a general result from measure theory). Moreover, by applying the Monotone
Convergence Theorem to both sides of

(8)

∫
H
E (Xn|H) dP =

∫
H
XndP, H ∈ H,

we have

(9)

∫
H
Y dP =

∫
H
XdP

for all H ∈ H. Thus, Y = E (X|H) a.s.

12 a) The RHS is the familiar (for some) probability density for a multivariate gaussian
variable X as long as the covariance matrix is non-singular.

Let y = Σ1/2u. The square root exists since Σ is positive definite. Then dny =∣∣Σ1/2
∣∣ dnu, where

∣∣Σ1/2
∣∣, the determinant of Σ1/2, is the Jacobian of the transfor-

mation. Note also that u′µ = y′Σ−1/2µ. By introducing this, we obtain

1

(2π)n

∫
Rn

e−iu
′x exp

(
iu′µ− 1

2
u′Σu

)
dnu(10)

=
1

(2π)n
1∣∣Σ1/2
∣∣ ∫Rn

exp

(
iy′Σ−1/2 (µ− x)− 1

2
y′y

)
dny(11)

=
1

(2π)n
1∣∣Σ1/2
∣∣ ∫Rn

exp

(
iy′a− 1

2
y′y

)
dny, a = Σ−1/2 (µ− x) .(12)

The integral now splits into a product of n one-dimensional integrals of the form∫
R exp

(
iya− 1

2y
2
)
dy, which can be found by observing that∫

R
exp

(
iya− 1

2
y2

)
dy(13)

= e−
a2

2

∫ ∞
−∞

exp

(
−(ia− y)2

2

)
dy(14)

s=(y−ia)
= e−

a2

2

∫ ∞
−∞

e−s
2/2ds =

√
2πe−

a2

2(15)

(We are integrating an analytic function in the complex plane along a path parallel
to the y-axis. The contributions from the connecting paths at both ends vanish.
Therefore,

(16)

∫ ∞
−∞

exp
(
− (ia− y)2 /2

)
dy =

∫ ∞
−∞

exp
(
−y2/2

)
dy =

√
2π

for all real a-s).
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Finally,

(17)
|a|2

2
=

1

2

n∑
k=1

(
Σ−1/2 (µ− x)

)2

k
=

1

2
(x− µ)′Σ−1 (x− µ) ,

which is just what we need.

(b) Proof of (i): This is rather surprising since it holds regardless the variables
are independent or not! The proof is simple if we use the series expansion for the
characteristic function,

(18) exp

(
−1

2
u′Σu

)
= 1− 1

2
u′Σu+

1

2

(
1

2
u′Σu

)2

+ · · · ,

and the formula

(19) E (X1X2X3) = i3
∂3φ

∂u1∂u2∂u3
(0) .

Observe that the third term in Eqn. 18 contains a product of 4 u-components and
all later terms contain even more than that. At the end we are going to put all
u-components equal to zero. After three derivations, the third term and all later
terms will either already be 0, or have remaining u-components and will be 0 for
u = 0. The derivatives of the second term are all of the form

(20) σij
∂3 (uiuj)

∂u1∂u2∂u3
,

and are all equal to 0 as well.

Proof of (ii):

In this case, we need to take four derivatives,

(21) E (X1X2X3X4) =
∂4φ

∂u1∂u2∂u3∂u4
(0) ,

and all terms in the expansion in Eqn. 18 will vanish, apart from some of the
derivatives of the third term. The third term may be written as

(22)
1

8

4∑
i,j,k,l=1

σijσkluiujukul,

and we see that

(23)
∂4 (uiujukul)

∂u1∂u2∂u3∂u4

will be non-zero only if all four components in the numerator are different. Since
σij = σji, there will be 8 such terms for σ12σ34, and likewise, 8 terms for σ13σ24 and
σ14σ23. This makes up the identity.

For info: The cumulants are coefficients in the Taylor expansion of log (φ (u)). The

main k-th order cumulant is the coefficient in front of the ik

k!u1 · u2 · · ·un -term of
the multidimensional Taylor expansion. Since the Taylor expansion of log (φ (u)) for
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multivariate Gaussian variables is simply log (φ (u)) = iu′µ− 1
2u′Σu, all cumulants

larger that the second vanish. The fourth cumulant is in general
(24)
κ4 = E (X1X2X3X4)−E (X1X2)E (X3X4)−E (X1X3)E (X2X4)−E (X1X4)E (X2X3) ,

hence the name of the identity. The identity is useful in all situations involving
Gaussian signals.
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