Norwegian University of Science and Technology
Department of Mathematical
Sciences

MA8109
 Stochastic Processes in Systems Theory
 Autumn 2013

1 a) $x \in(A \cap B)^{c} \Leftrightarrow x \notin A \cap B \Leftrightarrow x \notin A$ and $x \notin B \Leftrightarrow x \in A^{c}$ and $x \in B^{c} \Leftrightarrow x \in$ $A^{c} \cap B^{c}$
b) $x \in\left(\bigcup_{i} A_{i}\right)^{c} \Leftrightarrow x \notin \bigcup_{i} A_{i} \Leftrightarrow x \notin A_{i}$ for all $i \Leftrightarrow x \in A_{i}^{c}$ for all $i \Leftrightarrow x \in \bigcup_{i} A_{i}^{c}$
c) $x \in f^{-1}\left(A^{c}\right) \Leftrightarrow f(x) \in A^{c} \Leftrightarrow f(x) \notin A \Leftrightarrow x \notin f^{-1}(A) \Leftrightarrow x \in f^{-1}(A)^{c}$
d) $x \in f^{-1}\left(\bigcup_{i} A_{i}\right) \Leftrightarrow f(x) \in \bigcup_{i} A_{i} \Leftrightarrow f(x) \in A_{i}$ for all $i \Leftrightarrow x \in f^{-1}\left(A_{i}\right)$ for all $i \Leftrightarrow$ $x \in \bigcup_{i} f^{-1}\left(A_{i}\right)$

2 a) Note that $X=A \cup B \cup(A \cup B)^{c}$ and this union is disjoint since $A \cap B=\emptyset$. $\mathcal{F}_{\{A, B\}}=\left\{\emptyset, A, B,(A \cup B)^{c}, A \cup B, A \cup(A \cup B)^{c}, B \cup(A \cup B)^{c}, X\right\}$
b) Since any subset of \mathbb{N} is a countable union of elements of \mathcal{A}, it follows that $\mathcal{F}_{\mathcal{A}}=\mathcal{P}(\mathbb{N})$, the set of all subsets of \mathbb{N}.

3 It is enough to check all axioms: \varnothing and Ω are in all \mathcal{H}_{i}-s , and hence in \mathcal{H}. If $A \in \mathcal{H}$, then A (and $A^{C}!$) is in all \mathcal{H}_{i}-s, therefore $A^{C} \in \mathcal{H}$. For the last axiom, we observe that if $\left\{A_{n}\right\}$ is in \mathcal{H}, then it is in all \mathcal{H}_{i} and so will the limit A be since all \mathcal{H}_{i}-s are σ-algebras . But then $A \in \mathcal{H}$.

4 a) Since $A_{1} \subset A_{2}, A_{2}=A_{1} \cup\left(A_{2} \cap A_{1}^{c}\right)$, a union of disjoint measurable sets. By using the definition of a measure (σ-additivity) we may conclude the following:

$$
m\left(A_{2}\right)=m\left(A_{1} \cup\left(A_{2} \cap A_{1}^{c}\right)\right)=m\left(A_{1}\right)+\underbrace{m\left(A_{2} \cap A_{1}^{c}\right)}_{\geq 0} \geq m\left(A_{1}\right) .
$$

b) We would now like to show that $m\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)$. To do this we define the following disjoint sets B_{i} :

$$
\begin{aligned}
B_{1} & =A_{1}, \\
B_{2} & =A_{2} \backslash A_{1}, \\
B_{3} & =A_{3} \backslash\left(A_{1} \cup A_{2}\right), \\
& \vdots \\
B_{k} & =A_{k} \backslash\left(\bigcup_{i=1}^{k-1} A_{i}\right) .
\end{aligned}
$$

We first show by induction that $\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}$. Trivially, $A_{1}=B_{1}$. Now assume $\bigcup_{i=1}^{k} A_{i}=\bigcup_{i=1}^{k} B_{i}$ for some $k \in \mathbb{N}$ and check if the same holds for $k+1$,

$$
\begin{aligned}
\left(\bigcup_{i=1}^{k} B_{i}\right) \cup B_{k+1} & =\left(\bigcup_{i=1}^{k} A_{i}\right) \cup B_{k+1} \\
\bigcup_{i=1}^{k+1} B_{i} & =\left(\bigcup_{i=1}^{k} A_{i}\right) \cup\left(A_{k+1} \backslash\left(\bigcup_{i=1}^{k} A_{i}\right)\right)=\bigcup_{i=1}^{k+1} A_{i} .
\end{aligned}
$$

This leads to

$$
m\left(\bigcup_{i=1}^{\infty} A_{i}\right)=m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} m\left(B_{i}\right) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)
$$

since $B_{i} \subset A_{i}$ and thus $m\left(B_{i}\right) \leq m\left(A_{i}\right)$ as shown in a).
c) Assuming $A_{1} \subset A_{2} \subset A_{3} \subset \ldots$ and $A=\bigcup_{i=1}^{\infty} A_{i}$, we want to show that $m(A)=$ $\lim _{i \rightarrow \infty} m\left(A_{i}\right)$. If we construct disjoint sets B_{i} like in b), the following holds:

$$
m\left(\bigcup_{i=1}^{n} B_{i}\right)=m\left(A_{n}\right)
$$

for all $n \in \mathbb{N}$. By using the definition of A and the fact that $\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}$ we get:

$$
\begin{aligned}
m(A) & =m\left(\bigcup_{i=1}^{\infty} A_{i}\right)=m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} m\left(B_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} m\left(B_{i}\right)=\lim _{n \rightarrow \infty} m\left(\bigcup_{i=1}^{n} B_{i}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)
\end{aligned}
$$

5 Let m_{L} be the Lebesgue measure on \mathbb{R} and let $\epsilon>0$. Let $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of the elements in \mathbb{Q}. Define the open intervals $A_{n}=\left(q_{n}-2^{-n} \epsilon, q_{n}+2^{-n} \epsilon\right)$. Notice that $\mathbb{Q} \subset \cup_{n \in \mathbb{N}} A_{n}$, thus

$$
m_{L}(\mathbb{Q}) \leq m_{L}\left(\cup_{n \in \mathbb{N}} A_{n}\right) \leq \sum_{n \in \mathbb{N}} m_{L}\left(A_{n}\right)=\sum_{n \in \mathbb{N}} \frac{\epsilon}{2^{n}}=\epsilon
$$

Since ϵ is chosen arbitrarily small, we have $m_{L}(\mathbb{Q})=0$.

6 Assuming f_{1}, f_{2} are \mathcal{F}-measurable, we know

$$
f_{1}^{-1}((a, \infty)) \in \mathcal{F} \text { and } f_{2}^{-1}((a, \infty)) \in \mathcal{F}, \forall a \in \mathbb{R}
$$

From this, we find that

$$
\begin{aligned}
f^{-1}((a, \infty)) & =\{x \in X: f(x) \in(a, \infty)\} \\
& =\left\{x \in X: \max \left(f_{1}(x), f_{2}(x)\right) \in(a, \infty)\right) \\
& =\left\{x \in X: f_{1}(x) \in(a, \infty) \vee f_{2}(x) \in(a, \infty)\right\} \\
& =f_{1}^{-1}((a, \infty)) \cup f_{2}^{-1}((a, \infty)) \in \mathcal{F} \forall a \in \mathbb{R},
\end{aligned}
$$

since unions of measurable sets are measurable (\mathcal{F} is a σ-algebra). Since the collection of sets (a, ∞), $a \in \mathbb{R}$, generate the Borel σ-algebra \mathcal{B}, it follows that f is $(\mathcal{F}, \mathcal{B})$-measurable, i.e. \mathcal{F}-measurable.

7 1. We first prove the result for simple functions. So let $s_{1}=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}$ and $s_{2}=\sum_{l=1}^{m} b_{l} \chi_{B_{l}}$, where $\left\{A_{i}\right\}_{i}$ and $\left\{B_{i}\right\}_{i}$ are partitions of the underlying space. ${ }^{1}$ We want to prove that $\int\left(s_{1}+s_{2}\right)=\int s_{1}+\int s_{2}$.
Since $s_{1}+s_{2}=\sum_{k=1}^{n} \sum_{l=1}^{m}\left(a_{k}+b_{l}\right) \chi_{A_{k} \cap B_{l}}$ we see that $s_{1}+s_{2}$ is also a simple function, and thus

$$
\begin{aligned}
\int\left(s_{1}+s_{2}\right) & =\sum_{k=1}^{n} \sum_{l=1}^{m}\left(a_{k}+b_{l}\right) m\left(A_{k} \cap B_{l}\right) \\
& =\sum_{k=1}^{n} a_{k} \sum_{l=1}^{m} m\left(A_{k} \cap B_{l}\right)+\sum_{l=1}^{m} b_{l} \sum_{k=1}^{n} m\left(A_{k} \cap B_{l}\right) \\
& =\sum_{k=1}^{n} a_{k} m\left(A_{k}\right)+\sum_{l=1}^{m} b_{l} m\left(B_{l}\right) \\
& =\int s_{1}+\int s_{2}
\end{aligned}
$$

2. We prove the result for measurable functions $f_{1}, f_{2}: X \rightarrow[0, \infty]$. Pick two increasing sequences of nonnegative simple functions $\left\{s_{n}^{1}\right\}_{n}$ and $\left\{s_{n}^{2}\right\}_{n}$ converging pointwise to f_{1} and f_{2}, respectively. Then $s_{n}^{1}+s_{n}^{2}$ is a nonnegative sequence of increasing simple functions converging to $f_{1}+f_{2}$. Thus we get, by the Monotone Convergence Theorem and the corresponding result for simple functions, that

$$
\int\left(f_{1}+f_{2}\right)=\lim _{n \rightarrow \infty} \int\left(s_{n}^{1}+s_{n}^{2}\right)=\lim _{n \rightarrow \infty}\left(\int s_{n}^{1}+\int s_{n}^{2}\right)=\int f_{1}+\int f_{2} .
$$

8 We first note that $\mu(A)=\int_{A} \phi d m$ is well-defined and non-negative for all $A \in \mathcal{F}$ since ϕ is non-negative and \mathcal{F}-measurable.
Next we check that μ is σ-additive. If $A=\cup_{i=1}^{\infty} A_{i}$ with $A_{i} \cap A_{j}=\emptyset(i \neq j)$, then

$$
\begin{equation*}
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\int_{\cup_{i=1}^{\infty} A_{i}} \phi d m=\int_{X} \sum_{i=1}^{\infty} \phi \chi_{A_{i}} d m . \tag{1}
\end{equation*}
$$

Define $f_{n}=\sum_{i=1}^{n} \phi \chi_{A_{i}}$. Obviously, $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a non-decreasing sequence of nonnegative functions. Hence by (1) and the monotone convergence theorem,

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\int_{X} \lim _{n \rightarrow \infty} f_{n} d m=\lim _{n \rightarrow \infty} \int_{X} f_{n} d m .
$$

[^0]Now σ-additivity follows from linearity of the integral since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{X} f_{n} d m & =\lim _{n \rightarrow \infty} \int_{X} \sum_{i=1}^{n} \phi \chi_{A_{i}} d m \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int_{X} \phi \chi_{A_{i}} d m \\
& =\sum_{i=1}^{\infty} \int_{A_{i}} \phi d m \\
& =\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
\end{aligned}
$$

Since $\mu(\emptyset)=0$, we then conclude that $\mu(A)$ is a measure on (X, \mathcal{F}).

9 a) We have $\mu_{X}(\varnothing)=P\left(X^{-1}(\varnothing)\right)=P(\varnothing)=0$ and also $\mu_{X}(A)=P\left(X^{-1}(A)\right) \geq 0$ for every $A \in \mathcal{B}_{\mathbb{R}}$ since P is a measure. Lastly, if $\left\{A_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{F}$ are pairwise disjoint, then

$$
f^{-1}\left(A_{i}\right) \cap f^{-1}\left(A_{j}\right)=f^{-1}\left(A_{i} \cap A_{j}\right)=f^{-1}(\emptyset)=\emptyset \quad \text { for } \quad i \neq j
$$

and $\left\{f^{-1}\left(A_{i}\right)\right\}_{i=1}^{\infty}$ is also pairwise disjoint. It follows that

$$
\begin{aligned}
\mu_{X}\left(\bigsqcup_{i=1}^{\infty} A_{i}\right) & =P\left(X^{-1}\left(\bigsqcup_{i=1}^{\infty} A_{i}\right)\right) \\
& =P\left(\bigsqcup_{i=1}^{\infty} X^{-1}\left(A_{i}\right)\right) \\
& =\sum_{i=1}^{\infty} P\left(X^{-1}\left(A_{i}\right)\right) \\
& =\sum_{i=1}^{\infty} \mu_{X}\left(A_{i}\right)
\end{aligned}
$$

again since P is a measure. So μ_{X} is a measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. It is is a probability measure since $\mu_{X}(\mathbb{R})=P\left(X^{-1}(\mathbb{R})\right)=P(\Omega)=1$.
b) First suppose that $f=\chi_{A}$ for some $A \in \mathcal{B}_{\mathbb{R}}$. We deduce that $\chi_{A} \circ X=\chi_{X^{-1}(A)}$, which yields

$$
\begin{aligned}
E\left(\chi_{A}(X)\right) & =\int_{\Omega} \chi_{A}(X(\omega)) d P(\omega) \\
& =\int_{\Omega} \chi_{X^{-1}(A)}(\omega) d P(\omega) \\
& =P\left(X^{-1}(A)\right) \\
& =\mu_{X}(A) \\
& =\int_{\mathbb{R}} \chi_{A}(x) d \mu_{X}(x) .
\end{aligned}
$$

By the linearity of the integral, this will also hold for all simple functions. Now take any $\mathcal{B}_{\mathbb{R}}$-measurable $f: \Omega \rightarrow[0, \infty]$. Then we can find a sequence $\left(s_{n}\right)$ of
simple functions such that $0 \leq s_{n} \uparrow f$ (pointwise everywhere!). Clearly this also means that $0 \leq s_{n} \circ X \uparrow f \circ X$. By the above we have

$$
E\left(s_{n}(X)\right)=\int_{\Omega} s_{n}(X(\omega)) d P(\omega)=\int_{\mathbb{R}} s_{n}(x) d \mu_{X}(x)
$$

for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ and using the monotone convergence theorem, we obtain

$$
E(f(X))=\int_{\Omega} f(X(\omega)) d P(\omega)=\int_{\mathbb{R}} f(x) d \mu_{X}(x)
$$

which is what we wanted to show.

10 (a) is simple: Since f_{n} is 0 on the interval $\left[2 \omega_{n}, 1\right]$ and $\omega_{n} \rightarrow 0$, the variable $\omega>0$ will not be in $\left[2 \omega_{n}, 1\right]$ when n is large enough. Thus the limit is 0 for all ω-s. Clearly, since $g(\omega)=\lim _{n \rightarrow \infty} f_{n}(\omega)=0$, also $\int g d P=0$.
For (b) we observe that $\int f_{n} d P$ is the same as the familiar integral $\int_{0}^{1} f_{n}(\omega) d \omega$. For $a_{n}=\omega_{n}^{\alpha}$ we obtain

$$
\begin{equation*}
\int_{0}^{1} f_{n}(\omega) d \omega=\omega_{n}^{\alpha} \cdot \frac{\left(2 \omega_{n}\right) \cdot 1}{2}=\omega_{n}^{\alpha+1} \tag{2}
\end{equation*}
$$

showing that the limit when $n \rightarrow \infty$ may be 0,1 , or ∞ depending on the value of α. In (c) the function h is a dominating function for all f_{n}-s and in fact the smallest such function. If $\int h d P<\infty, h$ is integrable, and in that case (recalling the Lebesgue Dominated Convergence Theorem) we must have

$$
\begin{equation*}
\int\left(\lim _{n \rightarrow \infty} f_{n}\right) d P=\lim _{n \rightarrow \infty} \int f_{n} d P \tag{3}
\end{equation*}
$$

Thus, we conclude that $\int h d P$ has to be ∞ when $a_{n}=\omega_{n}^{-1}$, and ω_{n}^{-2}.
Comment: For the first case, $a_{n}=\omega_{n}^{-1 / 2}$, it is tempting to say that

$$
\begin{equation*}
h(\omega)=\max _{n} f_{n}(\omega) \leq \omega^{-1 / 2} \tag{4}
\end{equation*}
$$

But this function is integrable, and $\int_{0}^{1} \omega^{-1 / 2} d \omega=2$. Therefore, Eqn. 4 must be wrong (why?). Challenge: Prove that an integrable majorant nevertheless exists by finding a larger function, g, such that $h(\omega)<g(\omega)$ and $\int g d P<\infty$.
It could also be remarked that it is possible to find more complicated examples, with similar functions, such that $\int\left(\lim _{n \rightarrow \infty} f_{n}\right) d P=\lim _{n \rightarrow \infty} \int f_{n} d P$ even if there is no integrable majorant.

11 (a) This, so-called monotone property of conditional expectation, follows easily by utilizing the linearity and that $X \geq 0$ a.s. implies that $E(X \mid \mathcal{H}) \geq 0$ a.s. (Property 5):

$$
\begin{equation*}
Y-X \geq 0 \Longrightarrow E(Y-X \mid \mathcal{H})=E(Y \mid \mathcal{H})-E(X \mid \mathcal{H}) \geq 0 \tag{5}
\end{equation*}
$$

(b) From point (a) it follows that also $\left\{E\left(X_{n} \mid \mathcal{H}\right)\right\}$ will be an increasing sequence,

$$
\begin{equation*}
E\left(X_{n} \mid \mathcal{H}\right)(\omega) \leq E\left(X_{n+1} \mid \mathcal{H}\right)(\omega) \text { a.s. } \tag{6}
\end{equation*}
$$

Apart from a possible set of probability 0 , we then know that

$$
\begin{equation*}
E\left(X_{n} \mid \mathcal{H}\right)(\omega) \underset{n \rightarrow \infty}{\rightarrow} Y(\omega) \leq \infty \tag{7}
\end{equation*}
$$

for some non-negative function Y. First of all, the Y function will be \mathcal{H}-measurable since it is a limit of \mathcal{H}-measurable functions (this was mentioned briefly in the lectures and is a general result from measure theory). Moreover, by applying the Monotone Convergence Theorem to both sides of

$$
\begin{equation*}
\int_{H} E\left(X_{n} \mid \mathcal{H}\right) d P=\int_{H} X_{n} d P, H \in \mathcal{H} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{H} Y d P=\int_{H} X d P \tag{9}
\end{equation*}
$$

for all $H \in \mathcal{H}$. Thus, $Y=E(X \mid \mathcal{H})$ a.s.

12 a) The RHS is the familiar (for some) probability density for a multivariate gaussian variable \mathbf{X} as long as the covariance matrix is non-singular.
Let $\mathbf{y}=\boldsymbol{\Sigma}^{1 / 2} \mathbf{u}$. The square root exists since $\boldsymbol{\Sigma}$ is positive definite. Then $d^{n} y=$ $\left|\boldsymbol{\Sigma}^{1 / 2}\right| d^{n} u$, where $\left|\boldsymbol{\Sigma}^{1 / 2}\right|$, the determinant of $\boldsymbol{\Sigma}^{1 / 2}$, is the Jacobian of the transformation. Note also that $\mathbf{u}^{\prime} \mu=\mathbf{y}^{\prime} \boldsymbol{\Sigma}^{-1 / 2} \mu$. By introducing this, we obtain

$$
\begin{align*}
& \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{-i \mathbf{u}^{\prime} \mathbf{x}} \exp \left(i \mathbf{u}^{\prime} \mu-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}\right) d^{n} u \tag{10}\\
& =\frac{1}{(2 \pi)^{n}} \frac{1}{\left|\boldsymbol{\Sigma}^{1 / 2}\right|} \int_{\mathbb{R}^{n}} \exp \left(i \mathbf{y}^{\prime} \boldsymbol{\Sigma}^{-1 / 2}(\mu-\mathbf{x})-\frac{1}{2} \mathbf{y}^{\prime} \mathbf{y}\right) d^{n} y \tag{11}\\
& =\frac{1}{(2 \pi)^{n}} \frac{1}{\left|\boldsymbol{\Sigma}^{1 / 2}\right|} \int_{\mathbb{R}^{n}} \exp \left(i \mathbf{y}^{\prime} \mathbf{a}-\frac{1}{2} \mathbf{y}^{\prime} \mathbf{y}\right) d^{n} y, \quad \mathbf{a}=\boldsymbol{\Sigma}^{-1 / 2}(\mu-\mathbf{x}) \tag{12}
\end{align*}
$$

The integral now splits into a product of n one-dimensional integrals of the form $\int_{\mathbb{R}} \exp \left(i y a-\frac{1}{2} y^{2}\right) d y$, which can be found by observing that

$$
\begin{align*}
& \int_{\mathbb{R}} \exp \left(i y a-\frac{1}{2} y^{2}\right) d y \tag{13}\\
& =e^{-\frac{a^{2}}{2}} \int_{-\infty}^{\infty} \exp \left(-\frac{(i a-y)^{2}}{2}\right) d y \tag{14}\\
& \stackrel{s=(y-i a)}{=} e^{-\frac{a^{2}}{2}} \int_{-\infty}^{\infty} e^{-s^{2} / 2} d s=\sqrt{2 \pi} e^{-\frac{a^{2}}{2}} \tag{15}
\end{align*}
$$

(We are integrating an analytic function in the complex plane along a path parallel to the y-axis. The contributions from the connecting paths at both ends vanish. Therefore,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-(i a-y)^{2} / 2\right) d y=\int_{-\infty}^{\infty} \exp \left(-y^{2} / 2\right) d y=\sqrt{2 \pi} \tag{16}
\end{equation*}
$$

for all real $a-s)$.

Finally,

$$
\begin{equation*}
\frac{|\mathbf{a}|^{2}}{2}=\frac{1}{2} \sum_{k=1}^{n}\left(\boldsymbol{\Sigma}^{-1 / 2}(\mu-\mathbf{x})\right)_{k}^{2}=\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu), \tag{17}
\end{equation*}
$$

which is just what we need.
(b) Proof of (i): This is rather surprising since it holds regardless the variables are independent or not! The proof is simple if we use the series expansion for the characteristic function,

$$
\begin{equation*}
\exp \left(-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}\right)=1-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}+\frac{1}{2}\left(\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}\right)^{2}+\cdots \tag{18}
\end{equation*}
$$

and the formula

$$
\begin{equation*}
E\left(X_{1} X_{2} X_{3}\right)=i^{3} \frac{\partial^{3} \phi}{\partial u_{1} \partial u_{2} \partial u_{3}}(\mathbf{0}) \tag{19}
\end{equation*}
$$

Observe that the third term in Eqn. 18 contains a product of $4 u$-components and all later terms contain even more than that. At the end we are going to put all u-components equal to zero. After three derivations, the third term and all later terms will either already be 0 , or have remaining u-components and will be 0 for $\mathbf{u}=\mathbf{0}$. The derivatives of the second term are all of the form

$$
\begin{equation*}
\sigma_{i j} \frac{\partial^{3}\left(u_{i} u_{j}\right)}{\partial u_{1} \partial u_{2} \partial u_{3}} \tag{20}
\end{equation*}
$$

and are all equal to 0 as well.
Proof of (ii):
In this case, we need to take four derivatives,

$$
\begin{equation*}
E\left(X_{1} X_{2} X_{3} X_{4}\right)=\frac{\partial^{4} \phi}{\partial u_{1} \partial u_{2} \partial u_{3} \partial u_{4}}(\mathbf{0}) \tag{21}
\end{equation*}
$$

and all terms in the expansion in Eqn. 18 will vanish, apart from some of the derivatives of the third term. The third term may be written as

$$
\begin{equation*}
\frac{1}{8} \sum_{i, j, k, l=1}^{4} \sigma_{i j} \sigma_{k l} u_{i} u_{j} u_{k} u_{l} \tag{22}
\end{equation*}
$$

and we see that

$$
\begin{equation*}
\frac{\partial^{4}\left(u_{i} u_{j} u_{k} u_{l}\right)}{\partial u_{1} \partial u_{2} \partial u_{3} \partial u_{4}} \tag{23}
\end{equation*}
$$

will be non-zero only if all four components in the numerator are different. Since $\sigma_{i j}=\sigma_{j i}$, there will be 8 such terms for $\sigma_{12} \sigma_{34}$, and likewise, 8 terms for $\sigma_{13} \sigma_{24}$ and $\sigma_{14} \sigma_{23}$. This makes up the identity.
For info: The cumulants are coefficients in the Taylor expansion of $\log (\phi(\mathbf{u}))$. The main k-th order cumulant is the coefficient in front of the $\frac{i^{k}}{k!} u_{1} \cdot u_{2} \cdots u_{n}$-term of the multidimensional Taylor expansion. Since the Taylor expansion of $\log (\phi(\mathbf{u}))$ for
multivariate Gaussian variables is simply $\log (\phi(\mathbf{u}))=i \mathbf{u}^{\prime} \mu-\frac{1}{2} \mathbf{u}^{\prime} \boldsymbol{\Sigma} \mathbf{u}$, all cumulants larger that the second vanish. The fourth cumulant is in general
$\kappa_{4}=E\left(X_{1} X_{2} X_{3} X_{4}\right)-E\left(X_{1} X_{2}\right) E\left(X_{3} X_{4}\right)-E\left(X_{1} X_{3}\right) E\left(X_{2} X_{4}\right)-E\left(X_{1} X_{4}\right) E\left(X_{2} X_{3}\right)$,
hence the name of the identity. The identity is useful in all situations involving Gaussian signals.

[^0]: ${ }^{1}$ In the note Measure and Probability, a simple function is defined to be a linear combination of characteristic functions of disjoint sets $\left\{A_{i}\right\}_{i}$. We can demand that $\left\{A_{i}\right\}_{i}$ is a partition of X - meaning that in addition to disjointness we have that $\cup A_{i}=X$ - since we can always add $0 \cdot \chi_{s^{-1}(\{0\})}$ as a term without changing the function.

