

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Exercise set 2

1 (Øksendal 2:2.15) Prove that Brownian motion has the following fractal behavior: If B_t is a standard one-dimensional Brownian motion and c > 0, then the process

$$Y_t = \frac{1}{c} B_{c^2 t}$$

is also a standard Brownian motion.

2 (Øksendal 2:2.12 and 2:2.15) Let B_t be Brownian motion on \mathbb{R}^d , $t_0 > 0$, and $U \in \mathbb{R}^{d \times d}$ such that $U^T U = I$.

Show that the following processes also are Brownian motions on \mathbb{R}^d :

- **a)** $\tilde{B}_t = B_{t+t_0} B_{t_0}$.
- **b**) $\tilde{B}_t = UB_t$.
- **3** (Øksendal 2:2.13) Let B_t be a Brownian motion in \mathbb{R}^2 and $\rho > 0$. Compute

 $P(|B_t| < \rho).$

Hint: B_t is $N(\vec{0}, tI)$, use the probability density function.

- **4** (Øksendal 2:2.8) Let B_t be a Brownian motion in \mathbb{R} .
 - **a)** Show that $E(e^{iuB_t}) = e^{-\frac{1}{2}u^2t}$ and use this to prove that $E(B_t^4) = 3t^2$.
 - **b)** Use $E(f(B_t)) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f(x) e^{-\frac{x^2}{2t}} dx$ and integration by parts to show that $E(B_t^4) = 3t^2$.

5 Consider the standard Brownian motion in \mathbb{R}^n , B_t . Prove that

(2)
$$\mathsf{E}\left(|B_t - B_s|^4\right) = n(n+2)(t-s)^2.$$

Hint: For this problem you could use that

(3)
$$\mathsf{E}\left(X_{1}^{2} + \dots + X_{n}^{2}\right)^{2} = \mathsf{E}\left(\sum_{i,j=1}^{N} X_{i}^{2} X_{j}^{2}\right),$$

and use the independence and distribution of the increments and the fact that $E(B_i^4(t)) = 3t$ for i = 1, ..., n (previous exercise).

- **6** Let B_t be a Brownian motion on \mathbb{R} , and let $0 < t_1 < t_2 < \cdots < t_n$.
 - **a)** Show that the characteristic function of B_{t_1} and B_{t_2}

$$\Phi_{B_{t_1},B_{t_1}}(u_1,u_2) = e^{\frac{1}{2}u^T \Sigma u}$$

for $u = (u_1, u_2)^T$ and $\Sigma = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_2 \end{pmatrix}$.

Hint: Write $B_{t_2} = B_{t_1} + (B_{t_2} - B_{t_1})$ and use independence of the R.V.'s on the right. What can you say about characteristic functions of independet R.V.'s?

- b) Show that B_t is a Gaussian process. **Hint:** Show that B_{t_1}, \ldots, B_{t_n} is multivariate Gaussian by considering the characteristic function. Obs: You need not compute the convariance matrix explicitly to conclude.
- [7] Let B_t be a Brownian motion and \mathcal{F}_t the filtration generated by B_t . Show that $B_t^2 t$ is a martingale w.r.t. \mathcal{F}_t .

Hint: $B_t^p = B_s^p + (B_t^p - B_s^p)$ for p = 1, 2, use different properties of the conditional expectation.

8 Let B_t be a Brownian motion in \mathbb{R}^1 and \mathcal{F}_t the filtration generated by B_t .

a) Show that $E((e^{B_t})^p) = e^{\frac{1}{2}p^2t}$ for $p \in \mathbb{N}$. $(e^{B_t}$ is geometric B.M.)

Hint: Integrate using the probability density function, complete the squares.

b) Show that $e^{B_t - \frac{1}{2}t}$ is a martingale w.r.t. \mathcal{F}_t .

Hint: $B_t = B_s + (B_t - B_s)$, use a) and different properties of the conditional expectation.

9 Let B_t be a Brownian motion on \mathbb{R} with filtration $\{\mathcal{F}_t\}_t$,

$$0 = t_0 < t_1 < t_2 < \dots,$$

 $\Delta B_{t_i} = B_{t_i} - B_{t_{i-1}}$ and $h(\omega, t)$ an $\{\mathcal{F}_t\}_t$ -adapted stochastic process such that $E(h^2(\cdot, t)) < \infty$ for each t. Verify that the following process is a $\{\mathcal{F}_{t_i}\}_i$ -martingale (i.e. a discrete martingale):

$$Y_0 = 0,$$
 $Y_n = \sum_{i=1}^n h(\omega, t_{i-1}) \Delta B_{t_i}$ for $n \in \mathbb{N}.$

10 Let B_t be a Brownian motion in \mathbb{R} , $0 = t_0 < t_1 < \cdots < t_n = 1$, and \tilde{B}_t the linear interpolant of $\{(t_i, B_{t_i})\}_i$: For every $k = 0, \ldots, n$,

$$\tilde{B}_t = B_{t_k} + \frac{t - t_k}{t_{k+1} - t_k} (B_{t_{k+1}} - B_{t_k}) \quad \text{for} \quad t \in [t_k, t_{k+1}].$$

Show that:

- **a)** $\tilde{B}_0 = 0$ a.s. and $E(\tilde{B}_t) = 0$.
- **b)** $|E(\tilde{B}_t \tilde{B}_s) \min(s, t)| \le \max_k |t_{k+1} t_k|.$

c) \tilde{B}_t is a Gaussian process.

Hint c): Use characteristic functions. Similar computation as in Exercise 6.

11 Let X_1, X_2, \ldots be i.i.d. N(0, 1) random variables. Define

$$\begin{split} \Delta B_1^0 &= X_1, \\ \Delta B_{2m-1}^n &= \Delta B_m^{n-1} + \frac{1}{2^{\frac{n+1}{n}}} X_{i(n,m)}, \\ \Delta B_{2m}^n &= \Delta B_m^{n-1} - \frac{1}{2^{\frac{n+1}{n}}} X_{i(n,m)}, \end{split}$$

for $n = 1, 2, 3, ..., m = 1, ..., 2^{n-1}$ and $i(n, m) = 2^{n-1} + m$. Prove by induction that for each fixed n,

$$\Delta B_1^n, \ldots, \Delta B_{2^n}^n$$

are independent $N(0, \frac{1}{2^n})$ random variables.

Hint: You may assume that $\Delta B_1^n, \ldots, \Delta B_{2^n}^n$ are multivariate Gaussian, so zero correlation shows independence.

[If $X \in \mathbb{R}^d$ is multivariate Gaussian, then AX is also so for any $A \in \mathbb{R}^{d \times d}$]