Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 This is straightforward: The process Y_{t} is clearly Gaussian, the increments will be independent $\left(t \rightarrow c^{2} t\right.$ is increasing in t), and

$$
\operatorname{Var}\left(Y_{t}\right)=\frac{1}{c^{2}} \operatorname{Var}\left(B_{c^{2} t}\right)=\frac{1}{c^{2}} c^{2} t=t .
$$

2 a) We check the axioms of Brownian motion for $\tilde{B}_{t}=B_{t+t_{0}}-B_{t_{0}}$. $\tilde{B}_{0}=B_{t_{0}}-B_{t_{0}}=0$ a.s., and since $B_{t}-B_{s} \sim N(\mathbf{0},(t-s) I)$, it follows that

$$
\tilde{B}_{t}-\tilde{B}_{s}=B_{t+t_{0}}-B_{s+t_{0}} \sim N\left(\mathbf{0},\left(t+t_{0}-s-t_{0}\right) I\right)=N(\mathbf{0},(t-s) I) .
$$

Finally, let $0<t_{1}<\ldots<t_{n}$. Then

$$
\begin{aligned}
\tilde{B}_{t_{1}} & =B_{t_{1}+t_{0}}-B_{t_{0}} \\
\tilde{B}_{t_{2}}-\tilde{B}_{t_{1}} & =B_{t_{2}+t_{0}}-B_{t_{1}+t_{0}} \\
& \vdots \\
\tilde{B}_{t_{n}}-\tilde{B}_{t_{n-1}} & =B_{t_{n}+t_{0}}-B_{t_{n-1}+t_{0}} .
\end{aligned}
$$

are all independent since this property holds for the $B_{t_{k}+t_{0}}-B_{t_{k-1}+t_{0}}$'s.
b) We have $\tilde{B}_{t}=U B_{t}$ and we check the axioms. For $t=0, \tilde{B}_{0}=U B_{0}=\mathbf{0}$ a.s. The increments, $\tilde{B}_{t}-\tilde{B}_{s}=U\left(B_{t}-B_{s}\right)$, are linear combinations of Gaussian variables, so they are also Gaussian. We check that

$$
\mathrm{E}\left(\tilde{B}_{t}-\tilde{B}_{s}\right)=\mathrm{E}\left(U\left(B_{t}-B_{s}\right)\right)=U \mathrm{E}\left(B_{t}-B_{s}\right)=U \cdot \mathbf{0}=\mathbf{0},
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(\tilde{B}_{t}-\tilde{B}_{s}\right) & =\operatorname{Var}\left(U\left(B_{t}-B_{s}\right)\right)=\mathrm{E}\left[\left(U\left(B_{t}-B_{s}\right)\right)\left(U\left(B_{t}-B_{s}\right)\right)^{T}\right] \\
& =\mathrm{E}\left[U\left(B_{t}-B_{s}\right)\left(B_{t}-B_{s}\right)^{T} U^{T}\right]=U \operatorname{Var}\left(B_{t}-B_{s}\right) U^{T} \\
& =U(t-s) I U^{T}=(t-s) I .
\end{aligned}
$$

Therefore

$$
\tilde{B}_{t}-\tilde{B}_{s} \sim N(\mathbf{0},(t-s) I), \text { for } t>s \geq 0 .
$$

As for the increments we have,

$$
\begin{aligned}
\tilde{B}_{t_{1}} & =U B_{t_{1}} \\
\tilde{B}_{t_{2}}-\tilde{B}_{t_{1}} & =U\left(B_{t_{2}}-B_{t_{1}}\right), \\
& \vdots \\
\tilde{B}_{t_{n}}-\tilde{B}_{t_{n-1}} & =U\left(B_{t_{n}}-B_{t_{n-1}}\right) .
\end{aligned}
$$

These \tilde{B}-increments are multivariate Gaussian distributed since the B-increments are. We the show independence by considering the covariance,

$$
\begin{align*}
\operatorname{Cov} & \left(\tilde{B}_{t_{i}}-\tilde{B}_{t_{i-1}}, \tilde{B}_{t_{j}}-\tilde{B}_{t_{j-1}}\right) \\
& =\mathrm{E}\left(U\left(B_{t_{i}}-B_{t_{i-1}}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right)^{T} U\right) \\
& =U \mathbf{0} U^{T}=\mathbf{0} \tag{1}
\end{align*}
$$

for $i \neq j$, where we have used that the increments in the original Brownian motion B_{t} are independent and their covariances are zero.
$3 B_{t}$ is a Brownian motion, meaning $B_{t} \sim N(\mathbf{0}, t I)$. Letting $\mathbf{x}=(x, y) \in \mathbb{R}^{2}$, this means that

$$
P\left(\left|B_{t}\right|<\rho\right)=\iint_{|\mathbf{x}|<\rho} \frac{e^{-\frac{\mathbf{x}^{T} I \mathbf{x}}{2 t}}}{2 \pi t} \mathrm{~d} \mathbf{x}=\iint_{|\mathbf{x}|<\rho} \frac{e^{-\frac{x^{2}+y^{2}}{2 t}}}{2 \pi t} \mathrm{~d} \mathbf{x}
$$

By changing to polar coordinates, we now obtain

$$
P\left(\left|B_{t}\right|<\rho\right)=\int_{0}^{\rho} \int_{0}^{2 \pi} \frac{e^{-\frac{r^{2}}{2 t}}}{2 \pi t} r \mathrm{~d} \theta \mathrm{~d} r=1-e^{-\frac{\rho^{2}}{2 t}}
$$

4 a) Since B_{t} is a Brownian Motion, then by definition we have $B_{t} \sim N(0, t)$. In addition, we know that

$$
\int_{-\infty}^{\infty} e^{-\frac{(x-a)^{2}}{b}} d x=\sqrt{\pi b}
$$

where $b>0$. Therefore,

$$
\begin{aligned}
E\left(e^{i u B_{t}}\right) & =\int_{\mathbb{R}} e^{i u x} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
& =\frac{e^{-\frac{u^{2} t}{2}}}{\sqrt{2 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-i u t)^{2}}{2 t}} d x \\
& =\frac{e^{-\frac{u^{2} t}{2}}}{\sqrt{2 \pi t}} \cdot \sqrt{2 \pi t}=e^{-\frac{1}{2} u^{2} t}
\end{aligned}
$$

Differentiating we find that

$$
\begin{aligned}
\frac{d}{d u} E\left(e^{i u B_{t}}\right) & =\frac{d}{d u} e^{-\frac{1}{2} u^{2} t}=-u t E\left(e^{i u B_{t}}\right) \\
\frac{d^{2}}{d u^{2}} E\left(e^{i u B_{t}}\right) & =\left(u^{2} t^{2}-t\right) E\left(e^{i u B_{t}}\right) \\
\frac{d^{3}}{d u^{3}} E\left(e^{i u B_{t}}\right) & =\left(-u^{3} t^{3}+3 u t^{2}\right) E\left(e^{i u B_{t}}\right) \\
\frac{d^{4}}{d u^{4}} E\left(e^{i u B_{t}}\right) & =\left(u^{4} t^{4}-6 u^{2} t^{3}+3 t^{2}\right) E\left(e^{i u B_{t}}\right)
\end{aligned}
$$

Differentiating under the integral sign (the integrand is smooth with bounded derivatives, use the dominated convergence theorem), we also see that

$$
\left.\frac{d^{k}}{d u^{k}} E\left(e^{i u B_{t}}\right)\right|_{u=0}=E\left(\left.\frac{\partial^{k}}{\partial u^{k}} e^{i u B_{t}}\right|_{u=0}\right)=i^{k} E\left(B_{t}^{k}\right)
$$

Hence

$$
E\left(B_{t}^{4}\right)=\left.i^{4} \frac{d^{4}}{d u^{4}} E\left(e^{i u B_{t}}\right)\right|_{u=0}=3 t^{2} .
$$

b) Obviously by the condition,

$$
\begin{aligned}
E\left(B_{t}^{4}\right) & =\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} x^{4} e^{-\frac{x^{2}}{2 t}} d x \\
& =\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}}\left(\frac{x^{4} t}{-x}\right) d e^{-\frac{x^{2}}{2 t}} \\
& =\frac{1}{\sqrt{2 \pi t}}\left[\left.\left(-x^{3} t e^{-\frac{x^{2}}{2 t}}\right)\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}}\left(-3 x^{2} t e^{-\frac{x^{2}}{2 t}}\right) d x\right] \\
& =\frac{3}{\sqrt{2 \pi t}} \int_{\mathbb{R}} x^{2} t e^{-\frac{x^{2}}{2 t}} d x=\frac{3}{\sqrt{2 \pi t}} \int_{\mathbb{R}}\left(-x t^{2}\right) d e^{-\frac{x^{2}}{2 t}} \\
& =\frac{3}{\sqrt{2 \pi t}}\left[\left.\left(-x t^{2} e^{-\frac{x^{2}}{2 t}}\right)\right|_{-\infty} ^{\infty}-\int_{\mathbb{R}}\left(-t^{2} e^{-\frac{x^{2}}{2 t}}\right) d x\right] \\
& =\frac{3 t^{2}}{\sqrt{2 \pi t}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2 t}} d x=\frac{3 t^{2}}{\sqrt{2 \pi t}} \cdot \sqrt{2 \pi t}=3 t^{2} .
\end{aligned}
$$

5 We assume that $B_{0}=0$. Set $X=B_{t}-B_{s}=\left(X_{1}, \cdots, X_{n}\right)$, so that X is multivatiate Gaussian with independent components, $\mathrm{E} X_{i}=0$, and $\operatorname{Var} X_{i}=t-s$. Moreover,

$$
\mathrm{E}|X|^{4}=\mathrm{E}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)^{2}=\mathrm{E}\left(\sum_{i, j=1}^{N} X_{i}^{2} X_{j}^{2}\right)
$$

If $i=j$, then, by the Fourth Cumulant Identity (or a previous exercise), $\mathrm{E}\left(X_{i}^{4}\right)=$ $3\left(\mathrm{E} X_{i}^{2}\right)^{2}=3(t-s)^{2}$. There are n such terms. When $i \neq j, \mathrm{E}\left(X_{i}^{2} X_{j}^{2}\right)=$ $\mathrm{E}\left(X_{i}^{2}\right) \mathrm{E}\left(X_{j}^{2}\right)=(t-s)^{2}$, and we have $n(n-1)$ of these. Altogether,

$$
\mathrm{E}|X|^{4}=3(t-s)^{2} n+n(n-1)(t-s)^{2}=n(n+2)(t-s)^{2} .
$$

6 a) Consider $B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}$ for $0<t_{1}<t_{2}<\ldots<t_{n}$.
The characteristic function is defined as

$$
\Phi_{B t_{1}, B_{2}, \ldots, B_{t_{n}}}\left(u_{1}, u_{2}, \ldots, u_{n}\right):=E\left[\exp \left\{i \sum_{j=1}^{n} u_{j} B_{t_{j}}\right\}\right] .
$$

Since

$$
B_{t_{j}}=\sum_{k=1}^{j} \Delta B_{k} \quad \text { for } \quad \Delta B_{k}=\left(B_{t_{k}}-B_{t_{k-1}}\right) \quad \text { and } \quad B_{t_{0}}:=B_{0}=0,
$$

we introduce $\gamma_{k}=\sum_{j=k}^{n} u_{j}$ and write

$$
\Phi_{B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=E\left[\exp \left\{i \sum_{k=1}^{n} \gamma_{k} \Delta B_{k}\right\}\right]
$$

Using the independence of the ΔB_{k} 's,

$$
\begin{aligned}
& \Phi_{B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=E\left[\exp \left\{i \sum_{k=1}^{n} \gamma_{k} \Delta B_{k}\right\}\right] \\
& =E\left[\prod_{k=1}^{n} \exp \left\{i \gamma_{k} \Delta B_{k}\right\}\right]=\prod_{k=1}^{n} E\left[\exp \left\{i \gamma_{k} \Delta B_{k}\right\}\right]=\prod_{k=1}^{n} \Phi_{\Delta B_{k}}\left(\gamma_{k}\right) .
\end{aligned}
$$

Since $\Delta B_{k} \sim N\left(0, \sigma_{k}^{2}\right)$ for $\sigma_{k}^{2}=t_{k}-t_{k-1}$, we know from earlier that

$$
\Phi_{\Delta B_{k}}\left(\gamma_{k}\right)=\exp \left\{-\frac{\gamma_{k}^{2} \sigma_{k}^{2}}{2}\right\}
$$

and hence

$$
\begin{aligned}
& \Phi_{B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}}\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
& =E\left[\exp \left\{-\frac{1}{2} \gamma^{\top} \Lambda \gamma\right\}\right] \\
& =E\left[\exp \left\{-\frac{1}{2} \mathbf{u}^{\top} P^{\top} \Lambda P \mathbf{u}\right\}\right] \\
& =E\left[\exp \left\{-\frac{1}{2} \mathbf{u}^{\top} \Sigma \mathbf{u}\right\}\right]
\end{aligned}
$$

where $\Lambda=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right)$,

$$
P=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 0 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

and, finally

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{llllll}
\sigma_{1}^{2} & \sigma_{1}^{2} & \sigma_{1}^{2} & \cdots & \sigma_{1}^{2} & \sigma_{1}^{2} \\
\sigma_{1}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2} & \cdots & \sigma_{1}^{2}+\sigma_{2}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2} \\
\sigma_{1}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2} & \cdots & \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\sigma_{1}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2} & \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2} & \cdots & \sum_{k=1}^{n-1} \sigma_{k}^{2} & \sum_{k=1}^{n} \sigma_{k}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
t_{1} & t_{1} & t_{1} & \cdots & t_{1} & t_{1} \\
t_{1} & t_{2} & t_{2} & \cdots & t_{2} & t_{2} \\
t_{1} & t_{2} & t_{3} & \cdots & t_{3} & t_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
t_{1} & t_{2} & t_{3} & \cdots & t_{n-1} & t_{n-1} \\
t_{1} & t_{2} & t_{3} & \cdots & t_{n-1} & t_{n}
\end{array}\right]
\end{aligned}
$$

One can see that this answers the question by taking $n=2$
b) A random vector \mathbf{X} multivariate Gaussian $N_{n}(\mathbf{x} ; \mu, \Sigma)$ if and only if its characteristic function is

$$
\Phi_{\mathbf{X}}(\mathbf{u})=\exp \left\{i \mathbf{u}^{\top} \mu-\frac{1}{2} \mathbf{u}^{\top} \Sigma \mathbf{u}\right\},
$$

for some $\mu \in \mathbb{R}^{n}$ and $\Sigma \in \mathbb{R}^{n \times n}$.
By part (a), this is the case for $B_{t_{1}}, \ldots, B_{t_{n}}$ (with $\mu=0$) for any n and $0<$ $t_{1}<\cdots<t_{n}$, and hence B_{t} is a Gaussian process.

7 Since B_{t} is \mathcal{F}_{t}-measurable, so is $B_{t}^{2}-t$,

$$
E\left[\left|B_{t}^{2}-t\right|\right] \leq E\left[\left|B_{t}-B_{0}\right|^{2}\right]+E[|t|]=E\left[\left(B_{t}-B_{0}\right)^{2}\right]+E[t]=2 t<\infty,
$$

and for $t \leq s$,

$$
\begin{aligned}
E\left[B_{s}^{2}-s \mid \mathcal{F}_{t}\right] & =E\left[B_{s}^{2} \mid \mathcal{F}_{t}\right]-s \\
& =E\left[\left(B_{t}+B_{s}-B_{t}\right)^{2} \mid \mathcal{F}_{t}\right]-s \\
& =E\left[B_{t}^{2} \mid \mathcal{F}_{t}\right]+2 E\left[B_{t}\left(B_{s}-B_{t}\right) \mid \mathcal{F}_{t}\right]+E\left[\left(B_{s}-B_{t}\right)^{2} \mid \mathcal{F}_{t}\right]-s \\
& =B_{t}^{2}+2 B_{t} E\left[B_{s}-B_{t}\right]+E\left[\left(B_{s}-B_{t}\right)^{2}\right]-s \\
& =B_{t}^{2}+0+s-t-s \\
& =B_{t}^{2}-t .
\end{aligned}
$$

Here we used that B_{t}^{2} and B_{t} are \mathcal{F}_{t}-measurable, and that $B_{s}-B_{t}$ and $\left(B_{s}-B_{t}\right)^{2}$ are independent of \mathcal{F}_{t}. It follows that $B_{t}^{2}-t$ is a Martingale.

8 a) Note that $B_{t} \sim \mathcal{N}(0, t)$ and calculate

$$
\begin{aligned}
E\left(e^{p B_{t}}\right) & =\int_{\mathbb{R}} e^{p x} d F_{B_{t}}(x) \\
& =\int_{-\infty}^{\infty} e^{p x} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
& =e^{\frac{1}{2} p^{2} t},
\end{aligned}
$$

for all $p \in \mathbb{C}$.
b) Let $Y_{t}=e^{B_{t}-t / 2}$. To see that Y_{t} is a \mathcal{F}_{t}-martingale, we note that it is $\mathcal{F}_{t^{-}}$ measurable since it is a continuous function of a \mathcal{F}_{t}-measureable fuction. By a), we also have

$$
E\left(\left|Y_{t}\right|\right)=E\left(e^{B_{t}}\right) e^{-t / 2}<\infty .
$$

Finally, for $t \leq s$,

$$
\begin{aligned}
E\left(Y_{s} \mid \mathcal{F}_{t}\right) & =E\left(e^{B_{s}} e^{-s / 2} \mid \mathcal{F}_{t}\right) \\
& =E\left(e^{B_{s}} e^{-s / 2} \mid \mathcal{F}_{t}\right) \\
& =E\left(e^{B_{s}-B_{t}} e^{-s / 2} e^{B_{t}} \mid \mathcal{F}_{t}\right) \\
& =e^{B_{t}} E\left(e^{\left(B_{s}-B_{t}\right)} e^{-s / 2} \mid \mathcal{F}_{t}\right) \\
& =e^{B_{t}} E\left(e^{\left(B_{s}-B_{t}\right)} e^{-s / 2}\right) \\
& =e^{B_{t}} e^{(s-t) / 2} e^{-s / 2} \\
& =e^{B_{t}} e^{-t / 2} \\
& =Y_{t}
\end{aligned}
$$

where we used properties of the conditional expectation with $e^{B_{t}} \mathcal{F}_{t}$-measurable and $e^{B_{s}-B_{t}}$ independent of \mathcal{F}_{t} (a Borel function of an independent R.V. is independent).

9 First we check the process Y_{i} is $\mathcal{F}_{t_{i}}$-measurable, for all $i=0, \cdots, n$. This is obvious since $h\left(\omega, t_{i}\right)$ and $\Delta B_{t_{i}}$ are $\mathcal{F}_{t_{i}}$-adapted for all $t \in[0, T]$, and Y_{n} is constructed as

$$
Y_{0}=0, \text { and } Y_{n}=\sum_{i=1}^{n} h\left(\omega, t_{i-1}\right) \Delta B_{t_{i}} .
$$

Next, by Cauchy-Schwartz and independence of $\Delta B_{t_{j}}$ and $\mathcal{F}_{t_{j-1}}$,

$$
\begin{aligned}
E\left(\left|Y_{n}\right|\right) & =E\left(\left|\sum_{i=1}^{n} h\left(\cdot, t_{i-1}\right) \Delta B_{t_{i}}\right|\right) \\
& \leq \sum_{i=1}^{n} E\left(\left|h\left(\cdot, t_{i-1}\right) \Delta B_{t_{i}}\right|\right) \\
& \leq \sum_{i=1}^{n} \sqrt{E\left(\left|h\left(\cdot, t_{i-1}\right)\right|^{2}\right)} \sqrt{E\left(\left|\Delta B_{t_{i}}\right|^{2}\right)} \\
& =\sum_{i=1}^{n} \sqrt{E\left(\left|h\left(\cdot, t_{i-1}\right)\right|^{2}\right)\left(t_{i}-t_{i-1}\right)} \\
& <+\infty,
\end{aligned}
$$

because we assumed $E\left(h^{2}(\cdot, t)\right)<+\infty$ for each t.
Finally, the conditional expectation

$$
\begin{aligned}
E\left(Y_{n} \mid \mathcal{F}_{t_{j}}\right) & =E\left(\sum_{i=1}^{n} h\left(\cdot, t_{i-1}\right) \Delta B_{t_{i}} \mid \mathcal{F}_{t_{j}}\right) \\
& =\sum_{i=1}^{j} E\left(h\left(\cdot, t_{i-1}\right) \Delta B_{t_{i}} \mid \mathcal{F}_{t_{j}}\right)+\sum_{i=j+1}^{n} E\left(h\left(\cdot, t_{i-1}\right) \Delta B_{t_{j}} \mid \mathcal{F}_{t_{j}}\right) \\
& =\sum_{i=1}^{j} h\left(\omega, t_{i-1}\right) \Delta B_{t_{i}}+\sum_{i=j+1}^{n} E\left(E\left(h\left(\cdot, t_{i-1}\right) \Delta B_{t_{i}} \mid \mathcal{F}_{t_{j-1}}\right) \mid \mathcal{F}_{t_{j}}\right) \\
& =\sum_{i=1}^{j} h\left(\omega, t_{i-1}\right) \Delta B_{t_{i}}+\sum_{i=j+1}^{n} E\left(h\left(\cdot, t_{i-1}\right) E\left(\Delta B_{t_{i}}\right) \mid \mathcal{F}_{t_{j}}\right) \\
& =Y_{j}+0,
\end{aligned}
$$

since $E\left(\Delta B_{t_{i}}\right)=0$. Hence Y_{n} is a martingale with respect to $\left\{\mathcal{F}_{t_{i}}\right\}_{i}$.
10 a) This is almost immediate, as $\tilde{B}_{0}=B_{t_{0}}=0$ a.s and $E\left(\tilde{B}_{t}\right)=0$ by linearity.
b) Suppose without loss of generality that $s \in\left[t_{k}, t_{k+1}\right], t \in\left[t_{l}, t_{l+1}\right]$ with $s \leq$ $t, k \leq l$. Then

$$
\begin{aligned}
\tilde{B}_{t} \tilde{B}_{s}= & B_{t_{l}} B_{t_{k}}+\frac{s-t_{k}}{t_{k+1}-t_{k}} B_{t_{l}}\left(B_{t_{k+1}}-B_{t_{k}}\right)+\frac{t-t_{l}}{t_{l+1}-t_{l}}\left(B_{t_{l+1}}-B_{t_{l}}\right) B_{t_{k}} \\
& +\frac{\left(t-t_{l}\right)\left(s-t_{k}\right)}{\left(t_{l+1}-t_{l}\right)\left(t_{k+1}-t_{k}\right)}\left(B_{t_{l+1}}-B_{t_{l}}\right)\left(B_{t_{k+1}}-B_{t_{k}}\right) .
\end{aligned}
$$

Now by assumption on the order of the points we have

$$
\begin{aligned}
E\left(B_{t_{l}} B_{t_{k}}\right) & =t_{k} \\
E\left(B_{t_{l}}\left(B_{t_{k+1}}-B_{t_{k}}\right)\right) & =\min \left(t_{l}, t_{k+1}\right)-t_{k}=\left(t_{k+1}-t_{k}\right)\left(1-\delta_{k l}\right) \\
E\left(\left(B_{t_{l+1}}-B_{t_{l}}\right) B_{t_{k}}\right) & =0 \\
E\left(\left(B_{t_{l+1}}-B_{t_{l}}\right)\left(B_{t_{k+1}}-B_{t_{k}}\right)\right) & =\left(t_{k+1}-t_{k}\right) \delta_{k l},
\end{aligned}
$$

whence

$$
\begin{aligned}
\left|E\left(\tilde{B}_{t} \tilde{B}_{s}\right)-s\right| & =\left|-\left(s-t_{k}\right)+\left(s-t_{k}\right)\left(1-\delta_{k l}\right)+\frac{\left(t-t_{k}\right)\left(s-t_{k}\right)}{t_{k+1}-t_{k}} \delta_{k l}\right| \\
& =\left(s-t_{k}\right) \frac{t_{k+1}-t}{t_{k+1}-t_{k}} \delta_{k l} \leq s-t_{k} \leq t_{k+1}-t_{k} \\
& \leq \max _{0 \leq k \leq n-1}\left(t_{k+1}-t_{k}\right)
\end{aligned}
$$

c) Suppose that $0=\tau_{0} \leq \tau_{1}<\tau_{2}<\cdots<\tau_{m} \leq 1$ (the τ_{0} is only for simpler notation) and that $\tau_{j} \in\left[t_{k(j)}, t_{k(j)+1}\right]$ for each j (note that $k:\{0, \ldots, m\} \rightarrow$ $\{0, \ldots, n-1\}$ need not be injective). Now (where $u_{0}=0$)

$$
\begin{aligned}
\sum_{j=1}^{m} u_{j} \tilde{B}_{\tau_{j}} & =\sum_{j=1}^{m} u_{j}\left(B_{t_{k(j)}}+\frac{\tau_{j}-t_{k(j)}}{t_{k(j)+1)}-t_{k(j)}}\left(B_{t_{k(j)+1}}-B_{t_{k(j)}}\right)\right) \\
& =\sum_{j=0}^{m}\left(\frac{\tau_{j}-t_{k(j)}}{t_{k(j)+1}-t_{k(j)}} u_{j}+\sum_{i=j+1}^{m} u_{i}\right)\left(B_{t_{k(j)+1}}-B_{t_{k(j)}}\right) \\
& =\sum_{l=0}^{n-1}\left[\sum_{j \in k^{-1}(l)}\left(\frac{\tau_{j}-t_{l}}{t_{l+1}-t_{l}} u_{j}+\sum_{i=j+1}^{m} u_{i}\right)\right]\left(B_{t_{l+1}}-B_{t_{l}}\right),
\end{aligned}
$$

and hence, using the independence and distribution of $\Delta B_{t_{l+1}}=B_{t_{l+1}}-B_{t_{l}}$,

$$
\begin{aligned}
& \Phi_{\tilde{B}_{\tau_{1}}, \ldots, \tilde{B}_{\tau_{m}}}\left(u_{1}, \ldots, u_{m}\right)=E\left(\exp \left(i \sum_{j=1}^{m} u_{j} \tilde{B}_{\tau_{j}}\right)\right) \\
& =\prod_{l=0}^{n-1} \Phi_{\Delta B_{t_{l+1}}}\left(\sum_{j \in k^{-1}(l)}\left(\frac{\tau_{j}-t_{l}}{t_{l+1}-t_{l}} u_{j}+\sum_{i=j+1}^{m} u_{i}\right)\right) \\
& =\exp \left(-\frac{1}{2} \sum_{l=0}^{n-1}\left[\sum_{j \in k^{-1}(l)}\left(\frac{\tau_{j}-t_{l}}{t_{l+1}-t_{l}} u_{j}+\sum_{i=j+1}^{m} u_{i}\right)\right]^{2}\left(t_{l+1}-t_{l}\right)\right) .
\end{aligned}
$$

Since the exponent is clearly a quadratic form in u_{1}, \ldots, u_{m} with non-positive coefficients, we have that $\left(\tilde{B}_{\tau_{1}}, \ldots, \tilde{B}_{\tau_{m}}\right) \sim N(0, \Sigma)$. The covariance matrix Σ is determined by the coefficients of $u_{i} u_{j}$.

11 The conclusion obviously holds when $n=0$. We proceed by induction: fix some $n \geq 1$, and assume that the conclusion holds for $n-1$. Observe that each component of $B=\left(\Delta B_{1}^{n}, \Delta B_{2}^{n}, \ldots, \Delta B_{2^{n}}^{n}\right)$ is a linear combination of the independent $N(0,1)$ variables $X_{1}, X_{2}, \ldots, X_{2^{n}}$. This immediately shows that B is multivariate Gaussian, with zero mean. Using that normal variables are independent if and only if they are uncorrelated, what remains is to show that the covariance matrix is $\frac{1}{2^{n}} I$.

To compute the variances of the components of B, note that

$$
\begin{aligned}
& E\left[\left(\Delta B_{2 m-1}^{n}\right)^{2}\right] \\
& =E\left[\left(\frac{1}{2} \Delta B_{m}^{n-1}+\frac{1}{2^{\frac{n+1}{2}}} X_{i(n, m)}\right)^{2}\right] \\
& =\frac{1}{4} E\left[\left(\Delta B_{m}^{n-1}\right)^{2}\right]+2 E\left[\left(\frac{1}{2} \Delta B_{m}^{n-1}\right)\left(\frac{1}{2^{\frac{n+1}{2}}} X_{i(n, m)}\right)\right]+\frac{1}{2^{n+1}} E\left[\left(X_{i(n, m)}\right)^{2}\right] \\
& =\frac{1}{4} \frac{1}{2^{n-1}}+0+\frac{1}{2^{n+1}} \\
& =\frac{1}{2^{n}}
\end{aligned}
$$

where we used both the induction hypothesis, together with the fact that ΔB_{m}^{n-1} and $X_{i(n, m)}$ are uncorrelated since ΔB_{m}^{n-1} is a linear combination of $X_{1}, \ldots, X_{2^{n-1}}$ and $i(n, m)>2^{n-1}$. A similar computation shows that $E\left[\left(\Delta B_{2 m}^{n}\right)^{2}\right]=\frac{1}{2^{n}}$.
To show that the components of B are uncorrelated, note that

$$
\begin{aligned}
E\left[\left(\Delta B_{2 m-1}^{n}\right)\left(\Delta B_{2 m}^{n}\right)\right] & =E\left[\left(\frac{1}{2} \Delta B_{m}^{n-1}+\frac{1}{2^{\frac{n+1}{2}}} X_{i(n, m)}\right)\left(\frac{1}{2} \Delta B_{m}^{n-1}-\frac{1}{2^{\frac{n+1}{2}}} X_{i(n, m)}\right)\right] \\
& =\frac{1}{4} E\left[\left(\Delta B_{m}^{n-1}\right)^{2}\right]-\frac{1}{2^{n+1}} E\left[\left(X_{i(n, m)}\right)^{2}\right] \\
& =0 .
\end{aligned}
$$

For the other pairs of components we get a computation looking like

$$
E[(\Delta B+X)(\Delta \tilde{B}+\tilde{X})]=0
$$

where each pair of $\Delta B, X, \Delta \tilde{B}, \tilde{X}$ is uncorrelated. This concludes the proof.

