Norwegian University of Science and Technology Department of Mathematical Sciences MA8109 Stochastic Processes in Systems Theory Autumn 2013

Exercise set 3

1 Consider the Itô-integral

$$I\left(\omega\right) = \int_{0}^{1} f\left(t,\omega\right) dB_{t}\left(\omega\right)$$

where the function $f(t, \omega)$ is pre-determined (deterministic), that is,

$$f(t, \omega) = g(t)$$
 for all $\omega \in \Omega$.

- **a)** Show that f is F_t -adapted and that $f \in \mathcal{V}(0,1)$ if and only if $\int_0^1 |g(t)|^2 dt < \infty$.
- b) Determine the probability distribution of *I*.Hint: Apply App. A, Thm. A 19 in Øksendal.
- 2 Prove from the definition of the Itô integral, that

$$\int_0^t s dB_s = tB_t - \int_0^t B_s ds.$$

Hint: Note that $B_0 = 0$ a.s. Prove and apply Abel's summation by part formula:

$$\sum_{j=0}^{n-1} \Delta(a_j b_j) = \sum_{j=0}^{n-1} a_j \Delta b_j + \sum_{j=0}^{n-1} b_{j+1} \Delta a_j , \quad \Delta x_j = x_{j+1} - x_j.$$

Also note the alternate form, similar to the integration by parts formula:

$$\sum_{j=0}^{n-1} a_j \Delta b_j = a_n b_n - a_0 b_0 - \sum_{j=0}^{n-1} b_{j+1} \Delta a_j$$

- 3 (Øksendal 3:3.4) Check whether the following processes X_t are martingales w.r.t. $\{\mathcal{F}_t\}_t$.
 - (i) $X_t = B_t + 4t$
 - (ii) $X_t = B_t^2$
 - (iii) $X_t = t^2 B_t 2 \int_0^t s B_s ds$
 - (iv) $X_t = B_1(t)B_2(t)$ where (B_1, B_2) is 2-dimensional Brownian Motion.

4 Øksendal Exercise 4:4.1

5 Øksendal Exercise 4:4.4

6	Øksendal Exercise 4:4.7
7	Øksendal Exercise 4:4.8 a)
8	Øksendal Exercise 4:4.11
9	Øksendal Exercise 4:4.13 Hint: You may assume that $X_t, M_t \in L^p(\Omega)$ for all $p \in [1, \infty)$.
10	Øksendal Exercise 5:5.1 (i) and (iv) Hint: Check <i>all</i> the axioms of the definition
11	Øksendal Exercise 5:5.3

More hints at the end of Øksendal.