Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 a) For each t, the stochastic variable $f(t, \omega)$ has a constant value. Hence f is $F_{t^{-}}$ adapted and $E(f(t, \cdot))=g(t)$. All constants are measurable, and independent of all other stochastic variables. Moreover,

$$
\|f\|_{L^{2}\left(\left[\begin{array}{ll}
[1] \times \Omega)
\end{array}\right.\right.}^{2}=\int_{0}^{1} \mathrm{E}|f(t, \omega)|^{2} d t=\int_{0}^{1}|g(t)|^{2} d t
$$

which is finite (required for $f \in \mathcal{V}(0,1)$!) if and only if $\int_{0}^{1}|g(t)|^{2} d t<\infty$.
b) Theorem A19 deals with the limit in $L^{2}(\Omega)$ of gaussian stochastic variables. The Itô integral for functions in $\mathcal{V}(S, t)$ is the $L^{2}(\Omega)$-limit of integrals of elementary functions. These integrals are finite sums of gaussian variables and themselves gaussian. The limit, $\int f(t) d B_{t}$, is therefore gaussian (with mean 0). By the Itô isometry,

$$
\operatorname{Var}\left(\int_{0}^{1} f(t) d B_{t}\right)=\left\|\int_{0}^{1} f(t) d B_{t}\right\|_{L^{2}(\Omega)}^{2}=\|f\|_{L^{2}\left(\left[\begin{array}{ll}
0 & 1] \times \Omega)
\end{array}\right.\right.}^{2}=\int_{0}^{1}|g(t)|^{2} d t .
$$

Hence, $\int_{0}^{1} f(t) d B_{t}$ is $\mathcal{N}\left(0, \int_{0}^{1}|g(t)|^{2} d t\right)$.

2 We consider a partition \mathcal{P} of the interval $[0, t]$ such that

$$
0=t_{0}<t_{1}<\cdots<t_{n}=t
$$

Then, as easily seen,

$$
\int_{0}^{t} s d B_{s}=\lim _{\mathcal{P} \rightarrow 0} \sum_{0}^{n-1} t_{j}\left(B_{t_{j+1}}-B_{t_{j}}\right)
$$

(Show that $\phi_{n}(s)=\sum_{0}^{n-1} t_{j} \chi_{\left[t_{j}, t_{j+1}\right)}(s)$ converges to the function $f(s)=s$ in $\left.L^{2}([0, t] \times \Omega)!\right)$. Thus,

$$
\begin{aligned}
\sum_{0}^{n-1} t_{j}\left(B_{t_{j+1}}-B_{t_{j}}\right) & =\sum_{0}^{n-1} t_{j} \Delta B_{j} \\
& =\sum_{0}^{n-1} \Delta\left(t_{j} B_{j}\right)-\sum_{j=0}^{n-1} B_{t_{j+1}} \Delta t_{j} \\
& =t B_{t}-0 B_{0}-\sum_{j=0}^{n-1} B_{t_{j+1}} \Delta t_{j}
\end{aligned}
$$

Since the last sum is an approximation to the regular integral $\int_{0}^{t} B_{s} d s$, where the integrand is continuous with probability 1 , the result follows immediately

3 (i) We check the main martingale property:

$$
\mathrm{E}\left(X_{s} \mid \mathcal{F}_{t}\right)=\mathrm{E}\left(B_{s}+4 s \mid \mathcal{F}_{t}\right)=B_{t}+4 s \neq X_{t} .
$$

(ii) The hint in $\mathrm{B} \emptyset$, Ed. 6, is just

$$
\mathrm{E}\left(X_{t}\right)=\mathrm{E}\left(B_{t}^{2}\right)=n t+\mathrm{E}\left(B_{0}^{2}\right) \neq X_{0},
$$

and hence it violates that $\mathrm{E}\left(X_{t}\right)$ is constant $\left(\mathrm{B} \emptyset\right.$ assumes $\left.B_{t} \in \mathbb{R}^{n}\right)$.
It is also possible to check the main martingale property directly by writing $B_{s}=$ $B_{t}+\Delta B$, that is, $\Delta B=B_{s}-B_{t}$ where $s>t$:

$$
\begin{aligned}
\mathrm{E}\left(B_{s}^{2} \mid \mathcal{F}_{t}\right) & =\mathrm{E}\left(\left(B_{t}+\Delta B\right)^{2} \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(\left(B_{t}^{2}+2 B_{t} \Delta B+(\Delta B)^{2}\right) \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(B_{t}^{2} \mid \mathcal{F}_{t}\right)+2 B_{t} \mathrm{E}\left(\Delta B \mid \mathcal{F}_{t}\right)+\mathrm{E}\left((\Delta B)^{2} \mid \mathcal{F}_{t}\right) \\
& =B_{t}^{2}+0+\mathrm{E}(\Delta B)^{2} \\
& =B_{t}^{2}+(s-t) \neq X_{t} .
\end{aligned}
$$

(Generalize the argument to \mathbb{R}^{n} yourself):
(iii) In this case, we also need to consider the first two martingale properties for $\left\{X_{t}, \mathcal{F}_{t}\right\}$: The integral is a.s. a regular Riemann integral, and all Riemann sums will be \mathcal{F}_{t}-measurable. The limit, which is a limit also in $L^{2}(\Omega)$, is then \mathcal{F}_{t}-measurable. The rest is \mathcal{F}_{t}-measurable and hence X_{t} is \mathcal{F}_{t}-measurable.

For the second property, it is easy to see that X_{t} is the sum of two functions in $L^{2}(\Omega)$ (recall that the integral may be written as a limit in $L^{2}(\Omega)$ of integrals of elementary functions). Thus, since $L^{2}(\Omega) \subset L^{1}(\Omega)$, we have that $X_{t} \in L^{1}(\Omega)$.
The last property is the most interesting (A short version of the argument is also found in BØ, Ed. 6). Assume that $t<s$:

$$
\begin{aligned}
\mathrm{E}\left(X_{s} \mid \mathcal{F}_{t}\right) & =s^{2} \mathrm{E}\left(B_{s} \mid \mathcal{F}_{t}\right)-2 \mathrm{E}\left(\int_{0}^{s} u B_{u} d u \mid \mathcal{F}_{t}\right) \\
& =s^{2} B_{t}-2 \mathrm{E}\left(\int_{0}^{t} u B_{u} d u \mid \mathcal{F}_{t}\right)-2 \mathrm{E}\left(\int_{t}^{s} u B_{u} d u \mid \mathcal{F}_{t}\right) \\
& =s^{2} B_{t}-2 \int_{0}^{t} u B_{u} d u-2 \mathrm{E}\left(\int_{t}^{s} u\left(B_{t}+B_{u}-B_{t}\right) d u \mid \mathcal{F}_{t}\right) \\
& =s^{2} B_{t}-2 \int_{0}^{t} u B_{u} d u-2 B_{t} \int_{t}^{s} u d u-0 \\
& =s^{2} B_{t}-2 \int_{0}^{t} u B_{u} d u-B_{t}\left(s^{2}-t^{2}\right) \\
& =t^{2} B_{t}-2 \int_{0}^{t} u B_{u} d u=X_{t}!
\end{aligned}
$$

(iv) It is obvious that X_{t} is \mathcal{F}_{t}-measurable. Moreover, since B_{1} is independent of
B_{2},

$$
\begin{aligned}
\left\|B_{1 t} B_{2 t}\right\|_{L^{1}(\Omega)} & =\int_{\Omega}\left|B_{1 t}(\omega) B_{2 t}(\omega)\right| d P(\omega) \\
& =\int_{\Omega}\left|B_{1 t}(\omega)\right| d P(\omega) \int_{\Omega}\left|B_{2 t}(\omega)\right| d P(\omega) \\
& =\left\|B_{1 t}\right\|_{L^{1}(\Omega)}\left\|B_{2 t}\right\|_{L^{1}(\Omega)}<\infty .
\end{aligned}
$$

May also argue using Schwarz' inequality:

$$
\begin{aligned}
\left\|B_{1 t} B_{2 t}\right\|_{L^{1}(\Omega)} & =\int_{\Omega}\left|B_{1 t}(\omega) B_{2 t}(\omega)\right| d P(\omega) \\
& \left.\leq\left\|B_{1 t}\right\|_{L^{2}(\Omega)}\left\|B_{2 t}\right\|_{L^{2}(\Omega)}<\infty\right)
\end{aligned}
$$

Making the usual decomposition, $B_{i s}=B_{i t}+\Delta B_{i}$, we have

$$
\begin{aligned}
X_{s} & =\mathrm{E}\left(B_{1 s} B_{2 s} \mid \mathcal{F}_{t}\right)=\mathrm{E}\left(\left(B_{1 t}+\Delta B_{1}\right)\left(B_{2 t}+\Delta B_{2}\right) \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(B_{1 t} B_{2 t} \mid \mathcal{F}_{t}\right)+\mathrm{E}\left(\Delta B_{1} B_{2 t} \mid \mathcal{F}_{t}\right)+\mathrm{E}\left(\Delta B_{2} B_{1 t} \mid \mathcal{F}_{t}\right)+\mathrm{E}\left(\Delta B_{1} \Delta B_{2} \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(B_{1 t} B_{2 t} \mid \mathcal{F}_{t}\right)+B_{2 t} \mathrm{E}\left(\Delta B_{1} \mid \mathcal{F}_{t}\right)+B_{1 t} \mathrm{E}\left(\Delta B_{2} \mid \mathcal{F}_{t}\right)+0 \\
& =B_{1 t} B_{2 t}+0=X_{t}!
\end{aligned}
$$

4 Recall Itô's Formula for the transformation $Y_{t}=g\left(t, X_{t}\right)$:

$$
d Y_{t}=g_{t}\left(t, X_{t}\right) d t+g_{x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} g_{x x}\left(t, X_{t}\right) \cdot\left(d X_{t}\right)^{2}
$$

and "The Rules". E.g. when $d X_{t}=u d t+v d B_{t}$, then $\left(d X_{t}\right)^{2}=v^{2} d t$.
a) Here $d X_{t}=d B_{t}$ and $g(t, x)=x^{2}$. Thus,

$$
\begin{aligned}
d Y_{t} & =2 X_{t} d X_{t}+\frac{1}{2} 2 \cdot\left(d X_{t}\right)^{2} \\
& =d t+2 B_{t} d B_{t}
\end{aligned}
$$

b) Again, $d X_{t}=d B_{t}$, with $g(t, x)=2+t+e^{x}$:

$$
\begin{aligned}
d Y_{t} & =1 d t+e^{X_{t}} d X_{t}+\frac{e^{X_{t}}}{2} \cdot\left(d X_{t}\right)^{2} \\
& =\left(1+\frac{e^{B_{t}}}{2}\right) d t+e^{B_{t}} d B_{t}
\end{aligned}
$$

c) In this case, $X_{t}=\left(B_{1}(t), B_{2}(t)\right)$ is 2D BM and $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$:

$$
\begin{aligned}
\left.d Y_{t}\right) & =2 B_{1}(t) d B_{1}(t)+2 B_{2}(t) d B_{2}(t)+\frac{1}{2}(2 d t+2 d t) \\
& =2 d t+2\left(B_{1}(t) d B_{1}(t)+B_{2}(t) d B_{2}(t)\right)
\end{aligned}
$$

d) This looks a little confusing until we write

$$
g(t, x)=\left[\begin{array}{c}
t_{0}+t \\
x
\end{array}\right]
$$

and obtain from Itô's formula

$$
d \mathbf{X}_{t}=\frac{\partial g}{\partial t} d t+\frac{\partial g}{\partial x} d X_{t}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] d t+\left[\begin{array}{l}
0 \\
1
\end{array}\right] d B_{t}=\left[\begin{array}{c}
d t \\
d B_{t}
\end{array}\right]
$$

e) We see straight away that

$$
d X_{1}(t)=d B_{1}(t)+d B_{2}(t)+d B_{3}(t)
$$

For $X_{2}(t)$ we get that

$$
\begin{aligned}
d X_{2}(t) & =d\left(B_{2}^{2}(t)-B_{1}(t) B_{3}(t)\right) \\
& =d\left(B_{2}^{2}(t)\right)-d\left(B_{1}(t) B_{3}(t)\right) \\
& =\left(2 B_{2}(t) d B_{2}(t)+d t\right)-\left(B_{3}(t) d B_{1}(t)+B_{1}(t) d B_{1}(t)\right)
\end{aligned}
$$

In matrix form,

$$
d X_{t}=\left[\begin{array}{l}
d X_{1}(t) \\
d X_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] d t+\left[\begin{array}{ccc}
1 & 1 & 1 \\
-B_{3}(t) & 2 B_{2}(t) & -B_{1}(t)
\end{array}\right]\left[\begin{array}{l}
d B_{1}(t) \\
d B_{2}(t) \\
d B_{3}(t)
\end{array}\right]
$$

where we have used the fact that $d\left(B_{t}^{2}\right)=2 B_{t} d B_{t}+d t$ and that B_{1}, B_{2}, B_{3} are independent Brownian motions.

5 a) Let

$$
X_{t}=\int_{0}^{t} \theta(s, \omega) d B(s)-\frac{1}{2} \int_{0}^{t}|\theta(s, \omega)|^{2} d s
$$

then $Z_{t}=e^{X_{t}}=g\left(t, X_{t}\right)$ and $d X_{t}=\theta(t, \omega) d B_{t}-\frac{1}{2}|\theta(t, \omega)|^{2} d t$.
Since $g(t, x)$ is a C^{2} and X_{t} is an Ito process $\left(\theta \in \mathcal{V}^{n}\right)$, we use Ito's formula to deduce that

$$
\begin{aligned}
d Z_{t} & =\frac{\partial g}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right)\left(d X_{t}\right)^{2} \\
& =0+Z_{t}\left(\theta d B_{t}-\frac{1}{2}|\theta|^{2} d t\right)+\frac{1}{2} Z_{t}\left(\theta d B_{t}-\frac{1}{2}|\theta|^{2} d t\right)^{2} \\
& =Z_{t} \theta d B_{t}-\frac{1}{2} Z_{t}|\theta|^{2} d t+\frac{1}{2} Z_{t}\left(\theta d B_{t}\right)^{2}-\frac{1}{2} Z_{t}|\theta|^{2} \theta d B_{t} d t+\frac{1}{8} Z_{t}|\theta|^{4}(d t)^{2} \\
& =Z_{t} \theta(t, \omega) d B(t)
\end{aligned}
$$

Here we used the rules $d B_{i}(t) d B_{j}(t)=d t \delta_{i j}, d t^{2}=0$, and $d B_{t} d t=0$.
b) Since $Z_{t} \theta_{k}(t, \omega) \in \mathcal{V}[0, T]$, then

$$
Z_{t} \theta(t, \omega)=\left(Z_{t} \theta_{1}(t, \omega), Z_{t} \theta_{2}(t, \omega) \cdots, Z_{t} \theta_{n}(t, \omega)\right) \in \mathcal{V}^{n}[0, T]
$$

and by Corollary 3.2.6 in Øksendal,

$$
Z_{t}=Z_{0}+\int_{0}^{t}\left(Z_{s} \theta(s, \omega)\right) d B_{s}
$$

is a martingale for $t \leq T$.

6 a) The simplest example is $v=\left(\delta_{1 i}\right)_{i}$ with $X_{0}=0$, yielding $X_{t}=B_{t, 1}$. Then $E\left(X_{t}^{2}\right)=t \neq 0=E\left(X_{0}^{2}\right)$ for $t>0$, and so X_{t}^{2} cannot be a martingale with respect to $\mathcal{F}_{t}^{(n)}$.
b) We define

$$
M_{t}=\left|X_{t}\right|^{2}-\int_{0}^{t}\left\|v_{s}\right\|^{2} d s
$$

and want to show that this is a martingale with respect to the filtration $\mathcal{F}_{t}^{(n)}$. By Ito's lemma (with $g(t, x)=|x|^{2}$) we have

$$
\begin{aligned}
d\left|X_{t}\right|^{2} & =2 X_{t} d X_{t}+\frac{1}{2} 2\left(d X_{t}\right)^{2} \\
& =2 X_{t} v_{t} d B_{t}+\left\|v_{t}\right\|^{2} d t
\end{aligned}
$$

and hence

$$
\begin{aligned}
d M_{t} & =d\left|X_{t}\right|^{2}-\left\|v_{t}\right\|^{2} d t \\
& =2 X_{t} v_{t} d B_{t}
\end{aligned}
$$

By Lemma 3.2.6 it is thus sufficient to show that $X v \in \mathcal{V}^{n}(0, T)$. We check each point in the definition:
(i) Note that $X(\cdot, \omega)$ is continuous a.s and $X(t, \cdot)$ is \mathcal{F} - measurable for each $t \in[0, T]$. Hence $X(t, \omega)=\lim _{n \rightarrow \infty} X(\lfloor t n\rfloor / n, \omega)$ for a.e $(t, \omega) \in[0, T] \times \Omega$, where each $(t, \omega) \mapsto X(\lfloor t n\rfloor / n, \omega)$ is $\mathcal{B} \times \mathcal{F}$-measurable, being piecewise constant in time. Thus X is $\mathcal{B} \times \mathcal{F}$-measurable. Since $v \in \mathcal{V}^{n}(0, T)$ each component of v is $\mathcal{B} \times \mathcal{F}$-measurable. Hence each component of $X v$ is $\mathcal{B} \times \mathcal{F}$-measurable.
(ii)' By the extension of Theorem 3.2.1 part (iv) we have that X_{t} is $\mathcal{F}_{t}^{(n)}$ adapted. Each component of v is $\mathcal{F}_{t}^{(n)}$-adapted since $v \in \mathcal{V}^{n}(0, T)$. Hence each component of $X v$ is $\mathcal{F}_{t}^{(n)}$-adapted.
(iii) If $v \in L^{\infty}\left([0, T] \times \Omega, \mathbb{R}^{n}\right)$ and $X_{0} \in L^{2}(\Omega)$ then 1

$$
\begin{aligned}
E\left[\int_{0}^{T}\left|X_{t}\right|^{2}\left\|v_{t}\right\|^{2} d t\right] & \leq\|v\|_{\infty}^{2} E\left[\int_{0}^{T}\left|X_{t}\right|^{2} d t\right] \\
& =\|v\|_{\infty}^{2} \int_{0}^{T} E\left(\left|X_{t}\right|^{2}\right) d t \\
& \leq 2\|v\|_{\infty}^{2} \int_{0}^{T}\left(E\left(\left|X_{0}\right|^{2}\right)+E\left[\left(\int_{0}^{t} v_{s} d B_{s}\right)^{2}\right]\right) d t \\
& =2\|v\|_{\infty}^{2} \int_{0}^{T}\left(E\left(\left|X_{0}\right|^{2}\right)+E\left[\int_{0}^{t}\left\|v_{s}\right\|^{2} d s\right]\right) d t \\
& \leq 2 T\|v\|_{\infty}^{2}\left(E\left(\left|X_{0}\right|^{2}\right)+E\left[\int_{0}^{T}\left\|v_{t}\right\|^{2} d t\right]\right)<\infty
\end{aligned}
$$

Hence indeed $X v \in \mathcal{V}^{n}(0, T)$, and M_{t} is a martingale with respect to the filtration $\mathcal{F}_{t}^{(n)}$.

7 Apply Ito's formula (Theorem 4.2.1 in Øksendal (p. 49)) to $Y_{t}=f\left(X_{t}\right)$ where $X_{t}=B_{t}(u=0, v=I)$. Since $\frac{\partial f}{\partial t}=0$ and $f\left(X_{t}\right) \in \mathbb{R}^{1}$, it follows that

$$
\mathrm{d} Y_{s}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \mathrm{d}\left(X_{i}\right)_{s}+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \mathrm{d}\left(X_{i}\right)_{s} \mathrm{~d}\left(X_{j}\right)_{s}
$$

[^0]In our case the above simplifies to

$$
\begin{equation*}
\mathrm{d} f\left(B_{s}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \mathrm{d}\left(B_{i}\right)_{s}+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x) \mathrm{d} s \tag{1}
\end{equation*}
$$

since $\mathrm{d}\left(X_{i}\right)_{s} \mathrm{~d}\left(X_{j}\right)_{s}=\mathrm{d}\left(B_{i}\right)_{s} \mathrm{~d}\left(B_{j}\right)_{s}=\delta_{i j} \mathrm{~d} s$ (where $\delta_{i j}$ is Kronecker's delta). By definition this means that

$$
\begin{aligned}
f\left(B_{t}\right)-f\left(B_{0}\right) & =\int_{0}^{t} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \mathrm{d}\left(B_{i}\right)_{s}+\frac{1}{2} \int_{0}^{t} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x) \mathrm{d} s \\
& =\int_{0}^{t} \nabla f\left(B_{s}\right) \cdot \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} \Delta f\left(B_{s}\right) \mathrm{d} s
\end{aligned}
$$

OBS: $f\left(B_{t}\right)$ is a martingale only if $\Delta f=0$.

7 a) We apply Itô's formula to the function $g(t, x)=e^{t / 2} \cos x \in C^{2}([0,+\infty) \times \mathbb{R})$,

$$
\begin{aligned}
d X_{t} & =d\left(e^{t / 2} \cos B_{t}\right) \\
& =\frac{1}{2} e^{t / 2} \cos B_{t} d t-e^{t / 2} \sin B_{t} d B_{t}-\frac{1}{2} e^{t / 2} \cos B_{t} d t \\
& =-e^{t / 2} \sin B_{t} d B_{t}
\end{aligned}
$$

Note that $h(s, \omega):=e^{t / 2} \sin B_{t}$ is $\mathcal{B} \times \mathcal{F}$ measurable and $\left\{\mathcal{F}_{t}\right\}_{t}$-adapted, since and $B_{t}(\omega)$ is and $e^{t / 2} \sin (x)$ is continuous. Moreover, for any $t \geq 0$,

$$
\begin{aligned}
E\left(\int_{0}^{t} h(s, \cdot)^{2} d s\right) & =E\left(\int_{0}^{t} e^{s} \sin ^{2}\left(B_{s}\right) d s\right) \\
& \leq E\left(\int_{0}^{t} e^{s} d s\right) \\
& =e^{t}-1<+\infty
\end{aligned}
$$

Hence $h(s, \omega) \in \mathcal{V}(0, t)$. By Corollary 3.2.6 in Øksendal, it then follows that

$$
X_{t}(\omega)=X_{0}-\int_{0}^{t} e^{s / 2} \sin B_{s} d B_{s}
$$

is a martingale w.r.t. \mathcal{F}_{t}.
b) We apply Itô's formula to the function $g(t, x)=e^{t / 2} \sin x \in C^{2}([0,+\infty) \times \mathbb{R})$,

$$
\begin{aligned}
d X_{t} & =d\left(e^{t / 2} \sin B_{t}\right) \\
& =\frac{1}{2} e^{t / 2} \sin B_{t} d t+e^{t / 2} \cos B_{t} d B_{t}-\frac{1}{2} e^{t / 2} \sin B_{t} d t \\
& =e^{t / 2} \cos B_{t} d B_{t} .
\end{aligned}
$$

We can verify that the function $h(s, \omega):=e^{s / 2} \cos \left(B_{s}(\omega)\right) \in \mathcal{V}(0, t)$ for any finite $t \geq 0$ as in part a). By Corollary 3.2.6 in Øksendal, it then follows that

$$
X_{t}(\omega)=X_{0}-\int_{0}^{t} e^{s / 2} \cos B_{s} d B_{s}
$$

is a martingale w.r.t. \mathcal{F}_{t}.
c) For the function $g(t, x)=(x+t) \exp (-x-t / 2) \in C^{2}([0,+\infty) \times \mathbb{R})$, we compute

$$
\begin{aligned}
\frac{\partial g}{\partial t} & =\left(1-\frac{t+x}{2}\right) \exp (-x-t / 2) \\
\frac{\partial g}{\partial x} & =(1-t-x) \exp (-x-t / 2) \\
\frac{\partial^{2} g}{\partial x^{2}} & =(-2+t+x) \exp (-x-t / 2)
\end{aligned}
$$

and apply Itô's formula,

$$
\begin{aligned}
d X_{t} & =d g\left(t, B_{t}\right) \\
& =\left(\left(1-\frac{t+B_{t}}{2}\right) d t+\left(1-t-B_{t}\right) d B_{t}-\left(1-\frac{t+B_{t}}{2}\right) d t\right) \exp \left(-B_{t}-t / 2\right) \\
& =\left(1-t-B_{t}\right) \exp \left(-B_{t}-t / 2\right) d B_{t}
\end{aligned}
$$

Now we verify that $h(t, \omega):=\left(1-t-B_{t}(\omega)\right) \exp \left(-B_{t}(\omega)-t / 2\right) \in \mathcal{V}(0, t)$. As in a), the joint measurability and $\left\{\mathcal{F}_{t}\right\}_{t}$-adaptedness is evident. Note that

$$
\begin{aligned}
& E\left(\exp \left(a B_{s}\right)\right)=\int_{\mathbb{R}} e^{a x} \frac{1}{\sqrt{2 \pi s}} \exp \left(\frac{-x^{2}}{2 s}\right) d x=\exp \left(a^{2} s / 2\right), \text { for all } a \in \mathbb{R}, \\
& x^{2} \exp (-2 x) \leq 1+\exp (-4 x), \text { for all } x \in \mathbb{R}
\end{aligned}
$$

In particular, $E\left(\exp \left(-2 B_{s}\right)\right)=\exp (2 s)$, and

$$
E\left(B_{s}^{2} \exp \left(-2 B_{s}\right)\right) \leq E\left(1+\exp \left(-4 B_{s}\right)\right)=1+\exp (8 s)
$$

(You can also estimate the above expectation by Cauchy-Schwartz inequality.) So for all $t \geq 0$,

$$
\begin{aligned}
E\left(\int_{0}^{t} h(s, \cdot)^{2} d s\right) & =E\left(\int_{0}^{t}\left(1-s-B_{s}\right)^{2} \exp \left(-2 B_{s}-s\right) d s\right) \\
& \leq 2 E\left(\int_{0}^{t}\left((1-s)^{2}+B_{s}^{2}\right) \exp \left(-2 B_{s}-s\right) d s\right) \\
& =2 \int_{0}^{t} \exp (-s)\left((1-s)^{2} E\left(\exp \left(-2 B_{s}\right)\right)+E\left(B_{s}^{2} \exp \left(-2 B_{s}\right)\right)\right) d s \\
& \leq 2 \int_{0}^{t} \exp (-s)\left((1-s)^{2} \exp (2 s)+1+\exp (8 s)\right) d s \\
& =2 \int_{0}^{t}\left((1-s)^{2} \exp (s)+1+\exp (7 s)\right) d s \\
& <+\infty
\end{aligned}
$$

Therefore $h(s, \omega) \in \mathcal{V}(0, t)$, and by Corollary 3.2.6 in Øksendal,

$$
X_{t}(\omega)=X_{0}+\int_{0}^{t}\left(1-s-B_{s}\right) \exp \left(-B_{s}-s / 2\right) d B_{s}
$$

is a martingale w.r.t. \mathcal{F}_{t}.

9 Since X_{t} is an Ito process, $u \in \mathcal{W}$, and since u is also bounded, $|u(t, \omega)| \leq C<\infty$ for a.e. (t, ω), it follows that $u(t, \omega) \in \mathcal{V}[0, T]$. By Excercise 4.4 in Øksendal with $n=1, \theta=-u, M_{t}$ is a martingale and

$$
d M_{t}=-M_{t} u(t, \omega) d B_{t}
$$

Since $d X_{t}=u d t+d B_{t}$, we then use Ito product rule (Excercise 4.3 in Øksendal) to find that

$$
\begin{align*}
d Y_{t} & =X_{t} d M_{t}+M_{t} d X_{t}+d X_{t} d M_{t} \\
& =X_{t}\left(-M_{t} u d B_{t}\right)+M_{t}\left(u d t+d B_{t}\right)+\left(u d t+d B_{t}\right)\left(-M_{t} u d B_{t}\right) \\
& =-u M_{t} X_{t} d B_{t}+u M_{t} d t+M_{t} d B_{t}-u M_{t} d t \\
& =M_{t}\left(1-u X_{t}\right) d B_{t} \tag{2}
\end{align*}
$$

By Corollary 3.2.6 in Øksendal, Y_{t} is a martingale if

$$
V_{t}(\omega):=M_{t}\left(1-u X_{t}\right) \in \mathcal{V}[0, T]
$$

First, by the general Ito formula (Theorem 4.2.1 in Øksendal) applied to $g\left(t,\left(x_{1}, x_{2}\right)\right)=$ $x_{1} x_{2}, Y_{t}=X_{t} M_{t}$ is an Ito process since X_{t}, M_{t} are Ito processes (on the same filtered probability space). Hence, by $(2), V_{t}(\omega) \in \mathcal{W}$ and in particular, it is $\mathcal{B} \times \mathcal{F}$ measurable and \mathcal{F}_{t}-adapted.
By the hint, $X_{t}, M_{t} \in L^{p}(\Omega)$ and $E\left(\left|X_{t}\right|^{p}\right)<\infty$ and $E\left(\left|M_{t}\right|^{p}\right)<\infty$ for all $p \in[1, \infty)$, so by (Fubini and) the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left\|V_{s}\right\|_{L^{2}([0, T] \times \Omega)}^{2} & =\int_{0}^{T} E\left(\left(V_{s}(\omega)\right)^{2}\right) d s \\
& =\int_{0}^{T} E\left|M_{s}^{2}\left(1-u X_{s}\right)^{2}\right| d s \\
& \leq \int_{0}^{T} \sqrt{E\left(M_{s}^{4}\right) E\left(\left(1-u X_{s}\right)^{4}\right)} d s \\
& \leq \int_{0}^{T} \sqrt{8 E\left(M_{s}^{4}\right)\left(1+C^{4} E\left|X_{s}\right|^{4}\right)} d s \\
& <\infty
\end{aligned}
$$

Hence, $V_{t}(\omega)=M_{t}\left(1-u X_{t}\right) \in \mathcal{V}[0, T]$ and Y_{t} is an \mathcal{F}_{t}-martingale.

10 (i) We will show that $X_{t}=e^{B_{t}}$ solves

$$
d X_{t}=\frac{1}{2} X_{t} d t+X_{t} d B_{t}
$$

First note that $d B_{t}=0 d t+1 d B_{t}$ is an Itô process. Let $g(t, x)=e^{x}$ (a C^{2}-function) and $X_{t}=g\left(t, B_{t}\right)$, and use the Itô Formula (Theorem 4.1.2 in Øksendal) to calculate

$$
\begin{aligned}
d X_{t} & =\left.g_{t}\right|_{t, B_{t}} d t+\left.g_{x}\right|_{t, B_{t}} d B_{t}+\left.\frac{1}{2} g_{x x}\right|_{t, B_{t}} \cdot 1^{2} d t \\
& =0+\left.e^{x}\right|_{B_{t}} d B_{t}+\left.\frac{1}{2} e^{x}\right|_{B_{t}} d t \\
& =e^{B_{t}} d B_{t}+\frac{1}{2} e^{B_{t}} d t \\
& =X_{t} d B_{t}+\frac{1}{2} X_{t} d t
\end{aligned}
$$

where the vertical lines denote "insert for t and x ". By the Ito formula (the above theorem), the process $X_{t}=g\left(t, B_{t}\right)$ is again an Itô process and it satisfies the SDE a.e. Hence X_{t} is a a strong solution of the SDE.
(iv) We will show that $\mathbf{X}_{\mathbf{t}}=\left(X_{1}(t), X_{2}(t)\right)=\left(t, e^{t} B_{t}\right)$ solves

$$
d \mathbf{X}_{\mathbf{t}}=\left[\begin{array}{c}
d X_{1} \tag{3}\\
d X_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
X_{2}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
e^{X_{1}}
\end{array}\right] d B_{t}
$$

Here it looks like we are supposed to use the general Ito's formula. But since the first equation is trivial, we only need the 1D Ito formula for the second equation. Let first $g_{1}(t, x)=t$ and $X_{1}(t)=t$, then from usual calculus,

$$
d X_{1}=1 d t
$$

Next, let $g(t, x)=e^{t} x$ and $X_{2}(t)=g\left(t, B_{t}\right)$, then by the Ito formula,

$$
\begin{aligned}
d X_{2} & =\left.g_{t}\right|_{t, B_{t}} d t+\left.g_{x}\right|_{t, B_{t}} d B_{t}+\left.\frac{1}{2} g_{x x}\right|_{t, B_{t}} \cdot 1^{2} d t \\
& =g\left(t, B_{t}\right) d t+e^{t} d B_{t}+0 \\
& =X_{2} d t+e^{t} d B_{t}
\end{aligned}
$$

Since $X_{1}=t$, it follows that X satisfy equation (3) a.s. Since we did not use the general Ito formula, we now have to check that X is an Ito process. Let $u=\left(1, X_{2}\right)$ and $v=\left(0, e^{X_{1}}\right)$. Joint measurability and \mathcal{F}_{t}-adaptedness of X_{t}, u_{t}, v_{t} is obvious, and for all $t \geq 0$,

$$
E \int_{0}^{t}\left(\left|u_{s}\right|+\left|v_{s}\right|^{2}\right) d s \leq \frac{1}{2} t^{2}+e^{t} \int_{0}^{t} E\left|B_{s}\right|^{2} d s=\frac{1}{2} t^{2}\left(1+e^{t}\right)<\infty
$$

We have shown that X is an Ito process satisfying (3) a.s. Hence it is a strong solution of (3).

11 This equation,

$$
d X_{t}=r X_{t} d t+X_{t} \sum_{k=1}^{n} \alpha_{k} d B_{k}(t)
$$

is somewhat similar to the equation in Example 5.1.1 in the sense that the growth coefficient,

$$
r+\sum_{k=1}^{n} \alpha_{k} \frac{d B_{k}}{d t}(t)
$$

is equal to a constant r plus random "white noise". It seems that the same trick as in Example 5.1.1 should be feasible, so we introduce the transformation

$$
Y_{t}=g\left(X_{t}\right)=\log \left(X_{t}\right)
$$

and obtain from Itô's Formula,

$$
\begin{align*}
d Y_{t} & =\frac{\partial g}{\partial x} d X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(d X_{t}\right)^{2} \tag{4}\\
& =\frac{1}{X_{t}} d X_{t}-\frac{1}{2} \frac{1}{X_{t}^{2}}\left(d X_{t}\right)^{2}
\end{align*}
$$

The squared differential $\left(d X_{t}\right)^{2}$ may be evaluated according to the "rules",

$$
d t \cdot d t=d t \cdot d B_{k}(t)=0, d B_{k}(t) d B_{l}(t)=\delta_{k l} d t
$$

and hence,

$$
\left(d X_{t}\right)^{2}=X_{t}^{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t
$$

If this inserted into Eqn. (4), we obtain

$$
d Y_{t}=\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right) d t+\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)
$$

Since $Y_{t}=\ln X_{t}$, it follows that

$$
X_{t}=X_{0} \exp \left[\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right) t+\sum_{k=1}^{n} \alpha_{k} B_{k}(t)\right]
$$

where we have assumed $B_{k}(0)=0$.

[^0]: ${ }^{1}$ The Ito isometry extends to \mathbb{R}^{n}, but I cannot see a proof in \emptyset ksendal. It is not really necessary, since we can get a slightly weaker bound by using the isometry in \mathbb{R} and then using Cauchy-Schwarz.

