Norwegian University of Science and Technology

Autumn 2013
Department of Mathematical
Sciences

1 (Exam 2003, Problem 3b) Solve the stochastic differential equation

$$
\begin{equation*}
d X_{t}=\frac{1}{t} X_{t} d t+t d B_{t}, t \geq 1, X_{1}=1 \tag{1}
\end{equation*}
$$

Hint: Use an integrating factor (for the $d t$-part of the equation).

2 Øksendal Exercise 5:5.4

3* Oksendal Exercise 5:5.5

4 Øksendal Exercise 5:5.6

5 Øksendal Exercise 5:5.7

6* Øksendal Exercise 5:5.9

7* Oksendal Exercise 5:5.10

8 Oksendal Exercise 5:5.11
Hint: Show that $X_{t} \rightarrow b$ in $L^{2}(\Omega)$ as $t \rightarrow 1^{-}$(direct argument and Ito isometry) and use the Doob martingale inequality and Borel-Cantelli. See the hint at the end of Øksendal for more details.

More hints at the end of \emptyset ksendal.

