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Exercise set 4 – solutions

1 (MA8109 Exam 2003, problem 3b) This is a linear equation of the form

dXt = p (t)Xtdt+ q (t) dBt,

which is generally solvable using an integrating factor:

h (t) dXt = d (h (t)Xt)− h′ (t)Xtdt =
h (t)

t
dXt + h (t) tdBt.

Choose h such that −h′ (t) = h (t) /t, e.g. h (t) = t−1. Then

d

(
Xt

t

)
= dBt

so that
Xt

t
− 1

1
= Bt −B1.

The solution may then be written

Xt = t (1 +Bt −B1) = tB̃1,1
t , t ≥ 1.

Here, B̃1,1
t means a regular BM starting at x = 1 for t = 1.

2 (i) This is a system of equations, which may be written out as

dX1 (t) = dt+ dB1 (t) ,

dX2 (t) = X1 (t) dB2 (t) .(1)

Let us assume that the initial values are given by X1 (0) = x1 and X2 (0) = x2, and
as usual, B1 (0) = B2 (0) = 0, where B1 and B2 are independent standard Brownian
motions.

We observe that the first equation is completely independent of X2 and B2, and may
therefore be solved right away,

(2) X1 (t) = x1 + t+B1 (t) .

This gives us the second equation as

(3) dX2 (t) = [x1 + t+B1 (t)] dB2,

which may also be solved by a simple integration,

X2 (t) = x2 +

∫ t

0
(x1 + s+B1 (s)) dB2 (s)

= x2 + x1B2 (t) +

∫ t

0
(s+B1 (s)) dB2 (s) ,(4)
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and this is the solution stated in B.Ø.

There are several alternate forms of the solution. First of all,

(5)

∫ t

0
sdB2 (s) = tB2 (t)−

∫ t

0
B2 (s) ds

(see, e.g. Exercise 3.1). Thus,

(6) X2 (t) = x2 + (x1 + t)B2 (t)−
∫ t

0
B2 (s) ds+

∫ t

0
B1 (s) dB2 (s) .

It is also possible to apply the product formula (Exercise 4.3),

(7) d [X1 (t)B2 (t)] = X1 (t) dB2 (t) +B2 (t) dX1 (t) + dX1 (t) dB2 (t) .

The last term is, according to the rules, equal to 0,

(8) dX1 (t) dB2 (t) = (dt+ dB1 (t)) dB2 (t) = 0.

Thus,

(9) dX2 = d [X1 (t)B2 (t)]−B2 (t) dX1 (t) ,

leading to

(10) X2 (t) = x2 +X1 (t)B2 (t)−
(∫ t

0
B2 (s) ds+

∫ t

0
B2 (s) dB1 (s)

)
.

Show that this solution is the same as the one above!

(ii) and (iii)

Both these equations are of the form

(11) dXt = p (t)Xtdt+ q (t) dBt

and may be solved by introducing an integration factor, as discussed in the lecture.
We multiply the equation by a function h (t) and use Itô’s Formula,

(12) d [h (t)Xt] =
dh

dt
(t)Xtdt+ h (t) dXt,

so that the equation becomes

(13) d [h (t)Xt]−
dh

dt
(t)Xtdt = h (t) p (t)Xtdt+ h (t) q (t) dBt.

The idea is then to choose h so that

(14) −dh
dt

= h (t) p (t) ,

and the resulting equation becomes

(15) d (h (t)Xt) = h (t) q (t) dBt,

with the solution

(16) Xt =
X0h (0) +

∫ t
0 h (s) q (s) dBs

h (t)
.
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For Exercise (ii), Eqn. 14 becomes

(17) −dh
dt

= h

and then

(18) h (t) = e−t,

as stated in the book. The solution is then

(19) Xt =
X0h (0) +

∫ t
0 e
−sdBs

e−t
= X0e

t +

∫ t

0
et−sdBs.

Similarly, for Exercise (iii), the equation for h (t) is

(20) −dh
dt

= −h,

and h (t) = et. From Eqn. 16 we then obtain

(21) Xt =
X0 +

∫ t
0 e

se−sdBs

et
= X0e

−t + e−tBt,

assuming B0 = 0.

3 (Øksendal 5:5.5)

a) We multiply Xt by the integrating factor e−µt, and then employ Itô’s formula:

d(e−µtXt) = d(e−µt)Xt + e−µtdXt + d(e−µt)dXt

= −µe−µtXtdt+ e−µt(µXtdt+ σdBt)− µe−µtdt(µXtdt+ σdBt)

= σe−µtdBt.

Hence e−µtXt = X0 +
∫ t

0 σe
−µsdBs, and

Xt = eµtX0 +

∫ t

0
σeµ(t−s)dBs.

By Ito’s formula with f(s, x) = eµ(t−s)x (“integration by parts”), we can sim-
plify further since ∫ t

0
eµ(t−s)dBs = Bt + µ

∫ t

0
eµ(t−s)Bsds.

b) For the stochastic process above, we have

E(Xt) = E(eµtX0) + E

(∫ t

0
σeµ(t−s)dBs

)
= eµtE(X0),

since the Itô integral is a martingale when the integrand belongs to V[0, t] (ok

since
∫ t

0

(
eµ(t−s))2 ds <∞ for any t > 0).
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If we assume X0 is independent of the Brownian Motion Bt,

V ar(Xt) = V ar(eµtX0 +

∫ t

0
σeµ(t−s)dBs)

= e2µtV ar(X0) + V ar

(∫ t

0
σeµ(t−s)dBs

)
= e2µtV ar(X0) + E

((∫ t

0
σeµ(t−s)dBs

)2
)

= e2µtV ar(X0) + E

(∫ t

0
σ2e2µ(t−s)ds

)
= e2µtV ar(X0) +

σ2

2µ
(e2µt − 1).

4 It is stated in the exercise that also this equation may be solved by an integrating
factor multiplying both sides,

(22) FtdYt = Ft (rdt+ αYtdBt) .

However, here the dependent variable Yt is in the dBt-term, and the factor is already
given in the problem.

Let us, nevertheless, try to find the integration factor directly by assuming that it
is of the form

(23) Ft = f (t, Bt) .

From Itô’s Formula we have

(24) dFt =

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt,

and the idea for the integrating factor is again to make use of the product formula,

(25) d (FtYt) = FtdYt + YtdFt + dFtdYt.

In the present case,

(26) dFtdYt =

[(
∂f

∂t
+ +

1

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt

]
· (rdt+ αYtdBt) =

∂f

∂x
αYtdt

Inserting this and the equation itself into Eqn. 25 leads to

d (FtYt) = f · (rdt+ αYtdBt) + Yt

((
∂f

∂t
+ +

1

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt

)
+ αYt

∂f

∂x
dt

=

(
fr + Yt

(
∂f

∂t
+ α

∂f

∂x
+

1

2

∂2f

∂x2

))
dt+

(
fα+

∂f

∂x

)
YtdBt(27)

The equation would be easy to solve if we were able to find some function f such
that

fα+
∂f

∂x
= 0,

∂f

∂t
+ α

∂f

∂x
+

1

2

∂2f

∂x2
= 0.(28)
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Any such function will do, and the first equation is always satisfied for

(29) f (t, x) = g (t) e−αx.

Putting this into the second leads to

(30)
dg

dt
+

(
−α2 +

1

2
α2

)
g =

dg

dt
− 1

2
α2g = 0,

which is satisfied for

(31) g (t) = eα
2t/2.

We may therefore use the integrating factor

(32) Ft = exp

(
α2

2
t− αBt

)
,

which turns out to be the same as the one given in the book.

Eqn. 27 now simplifies to

(33) d (FtYt) = rFtdt,

with the solution

(34) FtYt − F0Y0 =

∫ t

0
rFsds,

or

(35) Yt = exp

(
−α

2

2
t+ αBt

)(
Y0 +

∫ t

0
r exp

(
α2

2
s− αBs

)
ds

)

5 (Øksendal 5.5.7) By setting Yt = Xt −m, the equation

dXt = (m−Xt) dt+ σdBt

is turned into
dYt = −Ytdt+ σdBt.

Here the integrating factor is h(t) = et since

d
(
etYt

)
− etYtdt = etdYt = −etYtdt+ σetdBt,

and thus

etYt − Y0 = σ

∫ t

0
esdBs

or

Xt = Yt +m = m+ (X0 −m) e−t + σ

∫ t

0
es−tdBs

Since the Itô integral has expectation 0 and variance given by the Itô isometry, we
have, for X0 independent of Bt,

EXt = m+ (EX0 −m) e−t,

VarXt = e−2t VarX0 + σ2

∫ t

0
e2(s−t)ds = e−2t VarX0 +

σ2

2

(
1− e−2t

)
.

We note that for t→∞, EXt → m and VarXt → σ2

2 .
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6∗ (Øksendal 5:5.9) We use Theorem 5.2.1 in Øksendal to conclude that there is a
unique strong solution of

(36)

{
dXt = ln(1 +X2

t )dt+ χ{Xt>0}XtdBt (t, ω) ∈ [0,∞)× R
Z := X0 = a ω ∈ R,

where a ∈ R and χ is the characteristic function.

We set b(t,Xt) = ln(1 + X2
t ) and σ(t,Xt) = χ{Xt>0}Xt, and check below that the

assumptions ((A1)–(A3)) of the theorem are satisfied.

(A1) b(t,Xt) and σ are Lipschitz continuous: By the Mean Value Theorem∣∣∣∣b(t, x)− b(t, y)

x− y

∣∣∣∣ =

∣∣∣∣ ln(1 + x2)− ln(1 + y2)

x− y

∣∣∣∣ MVT
=

∣∣∣∣ d

dx
ln(1 + x2) |x=ξ

∣∣∣∣
= max

x∈R

∣∣∣∣ 2x

1 + x2

∣∣∣∣ ≤ 1,

and
|σ(t, x)− σ(t, y)| = |χ{x>0}x− χ{y>0}y| ≤ |x− y|.

Since b, σ are independent of t, measurability follows from continuity in x.

(A2) Since b, σ are independent of t, linaer growth is a direct consequence of the Lip-
schitz estimate (A1): By adding and subtracting terms and using the Lipschitz
result,

|b(t, x)| ≤ |b(t, 0)|+ |b(t, x)− b(t, 0)| = 0 + 1 · |x|,

and
|σ(t, x)| ≤ |σ(t, 0)|+ |σ(t, x)− σ(t, 0)| = 0 + 1 · |x|

(A3) Z = a is in L2 since E|a|2 = |a|2 < ∞. Moreover, a is independent of F (m)
∞ =

F{Bs:s≥0} since a is a constant (constants are independent of any stochastic
variable).

7∗ (Øksendal 5:5.10) (A slightly simpler argument than suggested in the hint). Suppose
that b, σ, Z are as in theorem 5.2.1. Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

has a unique strong solution Xt for t ∈ [0, T ] satisfying X0 = Z. We wish to find a
bound on E(‖Xt‖2). By the Ito’s formula we have

d‖Xt‖2 = 2〈Xt, dXt〉+ 〈dXt, dXt〉
= 2〈Xt, b(t,Xt)〉dt+ 2〈Xt, σ(t,Xt)dBt〉+ tr (σ(t,Xt)

Tσ(t,Xt))dt

= (2〈Xt, b(t,Xt)〉+ ‖σ(t,Xt)‖2)dt+ 2〈Xt, σ(t,Xt)dBt〉,

whence

E(‖Xt‖2) = E(‖Z‖2) + E

[∫ t

0
(2〈Xs, b(s,Xs)〉+ ‖σ(s,Xs)‖2)ds

]
.
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Now, by the assumptions, we have

2〈Xs, b(t,Xs)〉+ ‖σ(t,Xs)‖2 ≤ ‖Xs‖2 + ‖b(s,Xs)‖2 + ‖σ(s,Xs)‖2

≤ ‖Xs‖2 + (‖b(s,Xs)‖+ ‖σ(s,Xs)‖)2

≤ ‖Xs‖2 + C2(1 + ‖Xs‖)2

≤ ‖Xs‖2 + 2C2(1 + ‖Xs‖2)

= 2C2 + (1 + 2C2)‖Xs‖2,

and so

E(‖Xt‖2) ≤ E(‖Z‖2) + 2C2t+ (1 + 2C2)

∫ t

0
E(‖Xs‖2)ds.

Grönwall’s lemma now implies that

E(‖Xt‖2) ≤ (E(‖Z‖2) + 2C2t)e(1+2C2)t.

8 The equation has a form we have not really addressed,

dYt =
b− Yt
1− t

dt+ dBt,

but by writing

(37) Xt = b− Y (t),

we obtain the linear SDE

(38) dXt =
1

t− 1
Xtdt− dBt, X0 = b− a.

This equation may, as before, be solved by an integrating factor (when 0 < t < 1).
The solution is

(39) Xt =
X0h (0) +

∫ t
0 h (s) (−1) dBs

h (t)
,

where h satisfies

(40) −dh
dt

=
h

t− 1
,

e.g. h (t) = 1
t−1 . Then

Xt = (t− 1)

(
(−1)−

∫ t

0

dBs
s− 1

)
= (b− a) (1− t)− (1− t)

∫ t

0

dBs
1− s

(41)

or

(42) Yt = b−Xt = a (1− t) + bt+ (1− t)
∫ t

0

dBs
1− s

,

which is the solution stated in the book.
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This solves the equation for us, although the exercise only requires that this solution
is verified. Putting the solution into the left hand side of the equation gives

LHS = dYt = (−a+ b) dt− dt ·
∫ t

0

dBs
1− s

+ (1− t) 1

(1− t)
dBt(43)

= (−a+ b) dt+ dBt − dt ·
∫ t

0

dBs
1− s

.(44)

Similarly, for right hand side,

RHS =
b− Yt
1− t

dt+ dBt =
b−

(
a (1− t) + bt+ (1− t)

∫ t
0
dBs
1−s

)
1− t

dt+ dBt

= (b− a) dt+ dBt − dt ·
∫ t

0

dBs
1− s

,(45)

and LHS = RHS.

The limit when t→ 1 is not at all obvious, and requires that

(46) lim
t→1−

(1− t)
∫ t

0

dBs (ω)

1− s
= 0 a.s.

Let

(47) g (t, ω) = (1− t)
∫ t

0

dBs (ω)

1− s
.

It is easy to see, from the Itô Isometry (and E
(∫ t

0
dBs(ω)

1−s

)
= 0) that

Var (g (t, ω)) = E
(
g (t, ω)2

)
= ‖g (t)‖2L2(Ω)(48)

= (1− t)2
∫ t

0

ds

(1− s)2(49)

= (1− t)2

[
1

1− s

]t
0

= (1− t)2

(
1

1− t
− 1

)
= t (1− t) .

Thus, ‖g (t)‖L2(Ω) −→t→1
0, but this is not quite sufficient for the limit in Eqn. 46.

However, it is now at least possible to find a sequence {tk} such that tk → 1 and
limk→∞ g (tk, ω) = 0 a.s. Which means that if it converges at all, it has to be to 0.

This is probably as far as we are able to come by ”elementary” means.

The book gives us a hint of applying the Doob’s Martingale Inequality stated (with-
out proof) in Thm. 3.2.4. Following B.Ø., we let the sequence {tn} be defined
tn = 1− 2−n, In = [tn, tn+1), and set

(50) Mt =

∫ t

0

dBs
1− s

.

Note that Mt, since it is defined in terms of an Itô integral, is an L2-martingale.
Note also that all In are disjoint and that the union makes up the whole of [0, 1).
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Then

P

(
ω ; sup

t∈In
|(1− t)Mt (ω)| > ε

)
< P

(
ω ; (1− tn) sup

t∈In
|Mt (ω)| > ε

)
< P

(
ω ; (1− tn) sup

0<t<tn+1

|Mt (ω)| > ε

)

= P

(
ω ; sup

0<t<tn+1

|Mt (ω)| > ε

(1− tn)

)

≤ (1− tn)2

ε2
E
(
M2
tn+1

)
(51)

=
(1− tn)2

ε2
× 1

1− tn+1

= 2−2n 1

ε2
2n+1 = 2ε−22−n,

which is the stated inequality. The trick is now to consider

(52) An =

{
ω ; sup

t∈In
|(1− t)Mt (ω)| > 2−n/4

}
=

{
ω ; sup

t∈In
|g (t, ω)| > 2−n/4

}
.

From the inequality above we obtain that

(53) P (An) < 2
(

2−n/4
)−2

2−n = 2 · 2−n/2,

and hence

(54)

∞∑
n=1

P (An) <∞.

The rest is piece of cake using (the easy part of) the Borel-Cantelli Lemma: For
almost all paths, g (t, ω) there exists an N (ω) such that ω /∈ An for all n > N (ω).
Thus, in that case,

(55) sup
t∈In
|g (t, ω)| ≤ 2−n/4

for all n > N (ω). We finally observe that ∪∞n=N(ω)In = [1 − 2−N(ω), 1), so that,
indeed,

(56) lim
t→1
|g (t, ω)| = 0

for these cases, that is, almost surely.
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