Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 (MA8109 Exam 2003, problem 3b) This is a linear equation of the form

$$
d X_{t}=p(t) X_{t} d t+q(t) d B_{t}
$$

which is generally solvable using an integrating factor:

$$
h(t) d X_{t}=d\left(h(t) X_{t}\right)-h^{\prime}(t) X_{t} d t=\frac{h(t)}{t} d X_{t}+h(t) t d B_{t}
$$

Choose h such that $-h^{\prime}(t)=h(t) / t$, e.g. $h(t)=t^{-1}$. Then

$$
d\left(\frac{X_{t}}{t}\right)=d B_{t}
$$

so that

$$
\frac{X_{t}}{t}-\frac{1}{1}=B_{t}-B_{1}
$$

The solution may then be written

$$
X_{t}=t\left(1+B_{t}-B_{1}\right)=t \tilde{B}_{t}^{1,1}, t \geq 1
$$

Here, $\tilde{B}_{t}^{1,1}$ means a regular BM starting at $x=1$ for $t=1$.

2 (i) This is a system of equations, which may be written out as

$$
\begin{align*}
d X_{1}(t) & =d t+d B_{1}(t) \\
d X_{2}(t) & =X_{1}(t) d B_{2}(t) \tag{1}
\end{align*}
$$

Let us assume that the initial values are given by $X_{1}(0)=x_{1}$ and $X_{2}(0)=x_{2}$, and as usual, $B_{1}(0)=B_{2}(0)=0$, where B_{1} and B_{2} are independent standard Brownian motions.

We observe that the first equation is completely independent of X_{2} and B_{2}, and may therefore be solved right away,

$$
\begin{equation*}
X_{1}(t)=x_{1}+t+B_{1}(t) \tag{2}
\end{equation*}
$$

This gives us the second equation as

$$
\begin{equation*}
d X_{2}(t)=\left[x_{1}+t+B_{1}(t)\right] d B_{2} \tag{3}
\end{equation*}
$$

which may also be solved by a simple integration,

$$
\begin{align*}
X_{2}(t) & =x_{2}+\int_{0}^{t}\left(x_{1}+s+B_{1}(s)\right) d B_{2}(s) \\
& =x_{2}+x_{1} B_{2}(t)+\int_{0}^{t}\left(s+B_{1}(s)\right) d B_{2}(s), \tag{4}
\end{align*}
$$

and this is the solution stated in B.Ø.
There are several alternate forms of the solution. First of all,

$$
\begin{equation*}
\int_{0}^{t} s d B_{2}(s)=t B_{2}(t)-\int_{0}^{t} B_{2}(s) d s \tag{5}
\end{equation*}
$$

(see, e.g. Exercise 3.1). Thus,

$$
\begin{equation*}
X_{2}(t)=x_{2}+\left(x_{1}+t\right) B_{2}(t)-\int_{0}^{t} B_{2}(s) d s+\int_{0}^{t} B_{1}(s) d B_{2}(s) \tag{6}
\end{equation*}
$$

It is also possible to apply the product formula (Exercise 4.3),

$$
\begin{equation*}
d\left[X_{1}(t) B_{2}(t)\right]=X_{1}(t) d B_{2}(t)+B_{2}(t) d X_{1}(t)+d X_{1}(t) d B_{2}(t) . \tag{7}
\end{equation*}
$$

The last term is, according to the rules, equal to 0 ,

$$
\begin{equation*}
d X_{1}(t) d B_{2}(t)=\left(d t+d B_{1}(t)\right) d B_{2}(t)=0 . \tag{8}
\end{equation*}
$$

Thus,

$$
d X_{2}=d\left[X_{1}(t) B_{2}(t)\right]-B_{2}(t) d X_{1}(t),
$$

leading to

$$
\begin{equation*}
X_{2}(t)=x_{2}+X_{1}(t) B_{2}(t)-\left(\int_{0}^{t} B_{2}(s) d s+\int_{0}^{t} B_{2}(s) d B_{1}(s)\right) . \tag{10}
\end{equation*}
$$

Show that this solution is the same as the one above!

(ii) and (iii)

Both these equations are of the form

$$
\begin{equation*}
d X_{t}=p(t) X_{t} d t+q(t) d B_{t} \tag{11}
\end{equation*}
$$

and may be solved by introducing an integration factor, as discussed in the lecture. We multiply the equation by a function $h(t)$ and use Itô's Formula,

$$
\begin{equation*}
d\left[h(t) X_{t}\right]=\frac{d h}{d t}(t) X_{t} d t+h(t) d X_{t} \tag{12}
\end{equation*}
$$

so that the equation becomes

$$
\begin{equation*}
d\left[h(t) X_{t}\right]-\frac{d h}{d t}(t) X_{t} d t=h(t) p(t) X_{t} d t+h(t) q(t) d B_{t} . \tag{13}
\end{equation*}
$$

The idea is then to choose h so that

$$
\begin{equation*}
-\frac{d h}{d t}=h(t) p(t), \tag{14}
\end{equation*}
$$

and the resulting equation becomes

$$
\begin{equation*}
d\left(h(t) X_{t}\right)=h(t) q(t) d B_{t}, \tag{15}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
X_{t}=\frac{X_{0} h(0)+\int_{0}^{t} h(s) q(s) d B_{s}}{h(t)} . \tag{16}
\end{equation*}
$$

For Exercise (ii), Eqn. 14 becomes

$$
\begin{equation*}
-\frac{d h}{d t}=h \tag{17}
\end{equation*}
$$

and then

$$
\begin{equation*}
h(t)=e^{-t}, \tag{18}
\end{equation*}
$$

as stated in the book. The solution is then

$$
\begin{equation*}
X_{t}=\frac{X_{0} h(0)+\int_{0}^{t} e^{-s} d B_{s}}{e^{-t}}=X_{0} e^{t}+\int_{0}^{t} e^{t-s} d B_{s} . \tag{19}
\end{equation*}
$$

Similarly, for Exercise (iii), the equation for $h(t)$ is

$$
\begin{equation*}
-\frac{d h}{d t}=-h, \tag{20}
\end{equation*}
$$

and $h(t)=e^{t}$. From Eqn. 16 we then obtain

$$
\begin{equation*}
X_{t}=\frac{X_{0}+\int_{0}^{t} e^{s} e^{-s} d B_{s}}{e^{t}}=X_{0} e^{-t}+e^{-t} B_{t}, \tag{21}
\end{equation*}
$$

assuming $B_{0}=0$.
3 (Øksendal 5:5.5)
a) We multiply X_{t} by the integrating factor $e^{-\mu t}$, and then employ Itô's formula:

$$
\begin{aligned}
d\left(e^{-\mu t} X_{t}\right) & =d\left(e^{-\mu t}\right) X_{t}+e^{-\mu t} d X_{t}+d\left(e^{-\mu t}\right) d X_{t} \\
& =-\mu e^{-\mu t} X_{t} d t+e^{-\mu t}\left(\mu X_{t} d t+\sigma d B_{t}\right)-\mu e^{-\mu t} d t\left(\mu X_{t} d t+\sigma d B_{t}\right) \\
& =\sigma e^{-\mu t} d B_{t} .
\end{aligned}
$$

Hence $e^{-\mu t} X_{t}=X_{0}+\int_{0}^{t} \sigma e^{-\mu s} d B_{s}$, and

$$
X_{t}=e^{\mu t} X_{0}+\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s} .
$$

By Ito's formula with $f(s, x)=e^{\mu(t-s)} x$ ("integration by parts"), we can simplify further since

$$
\int_{0}^{t} e^{\mu(t-s)} d B_{s}=B_{t}+\mu \int_{0}^{t} e^{\mu(t-s)} B_{s} d s .
$$

b) For the stochastic process above, we have

$$
E\left(X_{t}\right)=E\left(e^{\mu t} X_{0}\right)+E\left(\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s}\right)=e^{\mu t} E\left(X_{0}\right),
$$

since the Itô integral is a martingale when the integrand belongs to $\mathcal{V}[0, t]$ (ok since $\int_{0}^{t}\left(e^{\mu(t-s)}\right)^{2} d s<\infty$ for any $\left.t>0\right)$.

If we assume X_{0} is independent of the Brownian Motion B_{t},

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(e^{\mu t} X_{0}+\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s}\right) \\
& =e^{2 \mu t} \operatorname{Var}\left(X_{0}\right)+\operatorname{Var}\left(\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s}\right) \\
& =e^{2 \mu t} \operatorname{Var}\left(X_{0}\right)+E\left(\left(\int_{0}^{t} \sigma e^{\mu(t-s)} d B_{s}\right)^{2}\right) \\
& =e^{2 \mu t} \operatorname{Var}\left(X_{0}\right)+E\left(\int_{0}^{t} \sigma^{2} e^{2 \mu(t-s)} d s\right) \\
& =e^{2 \mu t} \operatorname{Var}\left(X_{0}\right)+\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right) .
\end{aligned}
$$

4 It is stated in the exercise that also this equation may be solved by an integrating factor multiplying both sides,

$$
\begin{equation*}
F_{t} d Y_{t}=F_{t}\left(r d t+\alpha Y_{t} d B_{t}\right) . \tag{22}
\end{equation*}
$$

However, here the dependent variable Y_{t} is in the $d B_{t}$-term, and the factor is already given in the problem.
Let us, nevertheless, try to find the integration factor directly by assuming that it is of the form

$$
\begin{equation*}
F_{t}=f\left(t, B_{t}\right) . \tag{23}
\end{equation*}
$$

From Itô's Formula we have

$$
\begin{equation*}
d F_{t}=\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d B_{t}, \tag{24}
\end{equation*}
$$

and the idea for the integrating factor is again to make use of the product formula,

$$
\begin{equation*}
d\left(F_{t} Y_{t}\right)=F_{t} d Y_{t}+Y_{t} d F_{t}+d F_{t} d Y_{t} . \tag{25}
\end{equation*}
$$

In the present case,

$$
\begin{equation*}
d F_{t} d Y_{t}=\left[\left(\frac{\partial f}{\partial t}++\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d B_{t}\right] \cdot\left(r d t+\alpha Y_{t} d B_{t}\right)=\frac{\partial f}{\partial x} \alpha Y_{t} d t \tag{26}
\end{equation*}
$$

Inserting this and the equation itself into Eqn. 25 leads to

$$
\begin{aligned}
d\left(F_{t} Y_{t}\right) & =f \cdot\left(r d t+\alpha Y_{t} d B_{t}\right)+Y_{t}\left(\left(\frac{\partial f}{\partial t}++\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d B_{t}\right)+\alpha Y_{t} \frac{\partial f}{\partial x} d t \\
& =\left(f r+Y_{t}\left(\frac{\partial f}{\partial t}+\alpha \frac{\partial f}{\partial x}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right)\right) d t+\left(f \alpha+\frac{\partial f}{\partial x}\right) Y_{t} d B_{t}
\end{aligned}
$$

The equation would be easy to solve if we were able to find some function f such that

$$
\begin{align*}
f \alpha+\frac{\partial f}{\partial x} & =0, \\
\frac{\partial f}{\partial t}+\alpha \frac{\partial f}{\partial x}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} & =0 . \tag{28}
\end{align*}
$$

Any such function will do, and the first equation is always satisfied for

$$
\begin{equation*}
f(t, x)=g(t) e^{-\alpha x} . \tag{29}
\end{equation*}
$$

Putting this into the second leads to

$$
\begin{equation*}
\frac{d g}{d t}+\left(-\alpha^{2}+\frac{1}{2} \alpha^{2}\right) g=\frac{d g}{d t}-\frac{1}{2} \alpha^{2} g=0, \tag{30}
\end{equation*}
$$

which is satisfied for

$$
\begin{equation*}
g(t)=e^{\alpha^{2} t / 2} \tag{31}
\end{equation*}
$$

We may therefore use the integrating factor

$$
\begin{equation*}
F_{t}=\exp \left(\frac{\alpha^{2}}{2} t-\alpha B_{t}\right) \tag{32}
\end{equation*}
$$

which turns out to be the same as the one given in the book.
Eqn. 27 now simplifies to

$$
\begin{equation*}
d\left(F_{t} Y_{t}\right)=r F_{t} d t, \tag{33}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
F_{t} Y_{t}-F_{0} Y_{0}=\int_{0}^{t} r F_{s} d s \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{t}=\exp \left(-\frac{\alpha^{2}}{2} t+\alpha B_{t}\right)\left(Y_{0}+\int_{0}^{t} r \exp \left(\frac{\alpha^{2}}{2} s-\alpha B_{s}\right) d s\right) \tag{35}
\end{equation*}
$$

5 (Øksendal 5.5.7) By setting $Y_{t}=X_{t}-m$, the equation

$$
d X_{t}=\left(m-X_{t}\right) d t+\sigma d B_{t}
$$

is turned into

$$
d Y_{t}=-Y_{t} d t+\sigma d B_{t} .
$$

Here the integrating factor is $h(t)=e^{t}$ since

$$
d\left(e^{t} Y_{t}\right)-e^{t} Y_{t} d t=e^{t} d Y_{t}=-e^{t} Y_{t} d t+\sigma e^{t} d B_{t},
$$

and thus

$$
e^{t} Y_{t}-Y_{0}=\sigma \int_{0}^{t} e^{s} d B_{s}
$$

or

$$
X_{t}=Y_{t}+m=m+\left(X_{0}-m\right) e^{-t}+\sigma \int_{0}^{t} e^{s-t} d B_{s}
$$

Since the Itô integral has expectation 0 and variance given by the Itô isometry, we have, for X_{0} independent of B_{t},

$$
\begin{aligned}
\mathrm{E} X_{t} & =m+\left(\mathrm{E} X_{0}-m\right) e^{-t}, \\
\operatorname{Var} X_{t} & =e^{-2 t} \operatorname{Var} X_{0}+\sigma^{2} \int_{0}^{t} e^{2(s-t)} d s=e^{-2 t} \operatorname{Var} X_{0}+\frac{\sigma^{2}}{2}\left(1-e^{-2 t}\right) .
\end{aligned}
$$

We note that for $t \rightarrow \infty, \mathrm{E} X_{t} \rightarrow m$ and $\operatorname{Var} X_{t} \rightarrow \frac{\sigma^{2}}{2}$.

6* (Øksendal 5:5.9) We use Theorem 5.2.1 in Øksendal to conclude that there is a unique strong solution of

$$
\begin{cases}\mathrm{d} X_{t}=\ln \left(1+X_{t}^{2}\right) \mathrm{d} t+\chi_{\left\{X_{t}>0\right\}} X_{t} \mathrm{~d} B_{t} & (t, \omega) \in[0, \infty) \times \mathbb{R} \tag{36}\\ Z:=X_{0}=a & \omega \in \mathbb{R}\end{cases}
$$

where $a \in \mathbb{R}$ and χ is the characteristic function.
We set $b\left(t, X_{t}\right)=\ln \left(1+X_{t}^{2}\right)$ and $\sigma\left(t, X_{t}\right)=\chi_{\left\{X_{t}>0\right\}} X_{t}$, and check below that the assumptions ((A1)-(A3)) of the theorem are satisfied.
(A1) $b\left(t, X_{t}\right)$ and σ are Lipschitz continuous: By the Mean Value Theorem

$$
\begin{aligned}
\left|\frac{b(t, x)-b(t, y)}{x-y}\right|= & \left.\left|\frac{\ln \left(1+x^{2}\right)-\ln \left(1+y^{2}\right)}{x-y}\right| \stackrel{\mathrm{MVT}}{=}\left|\frac{\mathrm{d}}{\mathrm{~d} x} \ln \left(1+x^{2}\right)\right|_{x=\xi} \right\rvert\, \\
& =\max _{x \in \mathbb{R}}\left|\frac{2 x}{1+x^{2}}\right| \leq 1
\end{aligned}
$$

and

$$
|\sigma(t, x)-\sigma(t, y)|=\left|\chi_{\{x>0\}} x-\chi_{\{y>0\}} y\right| \leq|x-y| .
$$

Since b, σ are independent of t, measurability follows from continuity in x.
(A2) Since b, σ are independent of t, linaer growth is a direct consequence of the Lipschitz estimate (A1): By adding and subtracting terms and using the Lipschitz result,

$$
|b(t, x)| \leq|b(t, 0)|+|b(t, x)-b(t, 0)|=0+1 \cdot|x|
$$

and

$$
|\sigma(t, x)| \leq|\sigma(t, 0)|+|\sigma(t, x)-\sigma(t, 0)|=0+1 \cdot|x|
$$

(A3) $Z=a$ is in L^{2} since $E|a|^{2}=|a|^{2}<\infty$. Moreover, a is independent of $\mathcal{F}_{\infty}^{(m)}=$ $\mathcal{F}_{\left\{B_{s}: s \geq 0\right\}}$ since a is a constant (constants are independent of any stochastic variable).
7^{*} (Øksendal 5:5.10) (A slightly simpler argument than suggested in the hint). Suppose that b, σ, Z are as in theorem 5.2.1. Then the stochastic differential equation

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}
$$

has a unique strong solution X_{t} for $t \in[0, T]$ satisfying $X_{0}=Z$. We wish to find a bound on $E\left(\left\|X_{t}\right\|^{2}\right)$. By the Ito's formula we have

$$
\begin{aligned}
d\left\|X_{t}\right\|^{2} & =2\left\langle X_{t}, d X_{t}\right\rangle+\left\langle d X_{t}, d X_{t}\right\rangle \\
& =2\left\langle X_{t}, b\left(t, X_{t}\right)\right\rangle d t+2\left\langle X_{t}, \sigma\left(t, X_{t}\right) d B_{t}\right\rangle+\operatorname{tr}\left(\sigma\left(t, X_{t}\right)^{T} \sigma\left(t, X_{t}\right)\right) d t \\
& =\left(2\left\langle X_{t}, b\left(t, X_{t}\right)\right\rangle+\left\|\sigma\left(t, X_{t}\right)\right\|^{2}\right) d t+2\left\langle X_{t}, \sigma\left(t, X_{t}\right) d B_{t}\right\rangle
\end{aligned}
$$

whence

$$
E\left(\left\|X_{t}\right\|^{2}\right)=E\left(\|Z\|^{2}\right)+E\left[\int_{0}^{t}\left(2\left\langle X_{s}, b\left(s, X_{s}\right)\right\rangle+\left\|\sigma\left(s, X_{s}\right)\right\|^{2}\right) d s\right]
$$

Now, by the assumptions, we have

$$
\begin{aligned}
2\left\langle X_{s}, b\left(t, X_{s}\right)\right\rangle+\left\|\sigma\left(t, X_{s}\right)\right\|^{2} & \leq\left\|X_{s}\right\|^{2}+\left\|b\left(s, X_{s}\right)\right\|^{2}+\left\|\sigma\left(s, X_{s}\right)\right\|^{2} \\
& \leq\left\|X_{s}\right\|^{2}+\left(\left\|b\left(s, X_{s}\right)\right\|+\left\|\sigma\left(s, X_{s}\right)\right\|^{2}\right. \\
& \leq\left\|X_{s}\right\|^{2}+C^{2}\left(1+\left\|X_{s}\right\|\right)^{2} \\
& \leq\left\|X_{s}\right\|^{2}+2 C^{2}\left(1+\left\|X_{s}\right\|^{2}\right) \\
& =2 C^{2}+\left(1+2 C^{2}\right)\left\|X_{s}\right\|^{2},
\end{aligned}
$$

and so

$$
E\left(\left\|X_{t}\right\|^{2}\right) \leq E\left(\|Z\|^{2}\right)+2 C^{2} t+\left(1+2 C^{2}\right) \int_{0}^{t} E\left(\left\|X_{s}\right\|^{2}\right) d s
$$

Grönwall's lemma now implies that

$$
E\left(\left\|X_{t}\right\|^{2}\right) \leq\left(E\left(\|Z\|^{2}\right)+2 C^{2} t\right) e^{\left(1+2 C^{2}\right) t}
$$

8 The equation has a form we have not really addressed,

$$
d Y_{t}=\frac{b-Y_{t}}{1-t} d t+d B_{t}
$$

but by writing

$$
\begin{equation*}
X_{t}=b-Y(t), \tag{37}
\end{equation*}
$$

we obtain the linear SDE

$$
\begin{equation*}
d X_{t}=\frac{1}{t-1} X_{t} d t-d B_{t}, X_{0}=b-a \tag{38}
\end{equation*}
$$

This equation may, as before, be solved by an integrating factor (when $0<t<1$). The solution is

$$
\begin{equation*}
X_{t}=\frac{X_{0} h(0)+\int_{0}^{t} h(s)(-1) d B_{s}}{h(t)}, \tag{39}
\end{equation*}
$$

where h satisfies

$$
\begin{equation*}
-\frac{d h}{d t}=\frac{h}{t-1}, \tag{40}
\end{equation*}
$$

e.g. $h(t)=\frac{1}{t-1}$. Then

$$
\begin{align*}
X_{t} & =(t-1)\left((-1)-\int_{0}^{t} \frac{d B_{s}}{s-1}\right) \\
& =(b-a)(1-t)-(1-t) \int_{0}^{t} \frac{d B_{s}}{1-s} \tag{41}
\end{align*}
$$

or

$$
\begin{equation*}
Y_{t}=b-X_{t}=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{d B_{s}}{1-s} \tag{42}
\end{equation*}
$$

which is the solution stated in the book.

This solves the equation for us, although the exercise only requires that this solution is verified. Putting the solution into the left hand side of the equation gives

$$
\begin{align*}
L H S & =d Y_{t}=(-a+b) d t-d t \cdot \int_{0}^{t} \frac{d B_{s}}{1-s}+(1-t) \frac{1}{(1-t)} d B_{t} \tag{43}\\
& =(-a+b) d t+d B_{t}-d t \cdot \int_{0}^{t} \frac{d B_{s}}{1-s} \tag{44}
\end{align*}
$$

Similarly, for right hand side,

$$
\begin{align*}
R H S & =\frac{b-Y_{t}}{1-t} d t+d B_{t}=\frac{b-\left(a(1-t)+b t+(1-t) \int_{0}^{t} \frac{d B_{s}}{1-s}\right)}{1-t} d t+d B_{t} \\
& =(b-a) d t+d B_{t}-d t \cdot \int_{0}^{t} \frac{d B_{s}}{1-s} \tag{45}
\end{align*}
$$

and $L H S=R H S$.
The limit when $t \rightarrow 1$ is not at all obvious, and requires that

$$
\begin{equation*}
\lim _{t \rightarrow 1-}(1-t) \int_{0}^{t} \frac{d B_{s}(\omega)}{1-s}=0 \text { a.s. } \tag{46}
\end{equation*}
$$

Let

$$
\begin{equation*}
g(t, \omega)=(1-t) \int_{0}^{t} \frac{d B_{s}(\omega)}{1-s} \tag{47}
\end{equation*}
$$

It is easy to see, from the Itô Isometry (and $E\left(\int_{0}^{t} \frac{d B_{s}(\omega)}{1-s}\right)=0$) that

$$
\begin{align*}
\operatorname{Var}(g(t, \omega)) & =E\left(g(t, \omega)^{2}\right) \\
& =\|g(t)\|_{L^{2}(\Omega)}^{2} \tag{48}\\
& =(1-t)^{2} \int_{0}^{t} \frac{d s}{(1-s)^{2}} \tag{49}\\
& =(1-t)^{2}\left[\frac{1}{1-s}\right]_{0}^{t}=(1-t)^{2}\left(\frac{1}{1-t}-1\right)=t(1-t)
\end{align*}
$$

Thus, $\|g(t)\|_{L^{2}(\Omega)} \underset{t \rightarrow 1}{ } 0$, but this is not quite sufficient for the limit in Eqn. 46. However, it is now at least possible to find a sequence $\left\{t_{k}\right\}$ such that $t_{k} \rightarrow 1$ and $\lim _{k \rightarrow \infty} g\left(t_{k}, \omega\right)=0$ a.s. Which means that if it converges at all, it has to be to 0 . This is probably as far as we are able to come by "elementary" means.
The book gives us a hint of applying the Doob's Martingale Inequality stated (without proof) in Thm. 3.2.4. Following B.Ø., we let the sequence $\left\{t_{n}\right\}$ be defined $t_{n}=1-2^{-n}, I_{n}=\left[t_{n}, t_{n+1}\right)$, and set

$$
\begin{equation*}
M_{t}=\int_{0}^{t} \frac{d B_{s}}{1-s} \tag{50}
\end{equation*}
$$

Note that M_{t}, since it is defined in terms of an Itô integral, is an L^{2}-martingale. Note also that all I_{n} are disjoint and that the union makes up the whole of $[0,1)$.

Then

$$
\begin{aligned}
P\left(\omega ; \sup _{t \in I_{n}}\left|(1-t) M_{t}(\omega)\right|>\varepsilon\right) & <P\left(\omega ;\left(1-t_{n}\right) \sup _{t \in I_{n}}\left|M_{t}(\omega)\right|>\varepsilon\right) \\
& <P\left(\omega ;\left(1-t_{n}\right) \sup _{0<t<t_{n+1}}\left|M_{t}(\omega)\right|>\varepsilon\right) \\
& =P\left(\omega ; \sup _{0<t<t_{n+1}}\left|M_{t}(\omega)\right|>\frac{\varepsilon}{\left(1-t_{n}\right)}\right) \\
& \leq \frac{\left(1-t_{n}\right)^{2}}{\varepsilon^{2}} E\left(M_{t_{n+1}}^{2}\right) \\
& =\frac{\left(1-t_{n}\right)^{2}}{\varepsilon^{2}} \times \frac{1}{1-t_{n+1}} \\
& =2^{-2 n} \frac{1}{\varepsilon^{2}} 2^{n+1}=2 \varepsilon^{-2} 2^{-n}
\end{aligned}
$$

which is the stated inequality. The trick is now to consider

$$
\begin{equation*}
A_{n}=\left\{\omega ; \sup _{t \in I_{n}}\left|(1-t) M_{t}(\omega)\right|>2^{-n / 4}\right\}=\left\{\omega ; \sup _{t \in I_{n}}|g(t, \omega)|>2^{-n / 4}\right\} \tag{52}
\end{equation*}
$$

From the inequality above we obtain that

$$
\begin{equation*}
P\left(A_{n}\right)<2\left(2^{-n / 4}\right)^{-2} 2^{-n}=2 \cdot 2^{-n / 2} \tag{53}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty \tag{54}
\end{equation*}
$$

The rest is piece of cake using (the easy part of) the Borel-Cantelli Lemma: For almost all paths, $g(t, \omega)$ there exists an $N(\omega)$ such that $\omega \notin A_{n}$ for all $n>N(\omega)$. Thus, in that case,

$$
\begin{equation*}
\sup _{t \in I_{n}}|g(t, \omega)| \leq 2^{-n / 4} \tag{55}
\end{equation*}
$$

for all $n>N(\omega)$. We finally observe that $\cup_{n=N(\omega)}^{\infty} I_{n}=\left[1-2^{-N(\omega)}, 1\right)$, so that, indeed,

$$
\begin{equation*}
\lim _{t \rightarrow 1}|g(t, \omega)|=0 \tag{56}
\end{equation*}
$$

for these cases, that is, almost surely.

