Norwegian University of Science and Technology

Stochastic Processes in Systems Theory

Autumn 2013
Department of Mathematical
Sciences
(1) Øksendal Exercise 7:7.1

2 Øksendal Exercise 7:7.2

3 Øksendal Exercise 7:7.8
4 Øksendal Exercise 7:7.18

5 (Øksendal 7:7.9) Let X_{t}^{x} be a geometric Brownian motion, i.e.,

$$
d X_{t}=r X_{t} d t+\alpha X_{t} d B_{t}, \quad X_{0}=x>0,
$$

where $B_{t} \in \mathbb{R}$ and r, α are constants.
a) Find the generator A of X_{t}^{x} and compute $A f(x)$ when $f(x)=x^{\gamma}$ and $x>0$ and γ is constant.
b) If $r<\frac{1}{2} \alpha^{2}$, then $X_{t} \rightarrow 0$ as $t \rightarrow \infty$, a.s. (see Example 5.1.1 in \emptyset ksendal).

What is the probability p that X_{t}^{x}, starting from $x<R$ ever hits the value R ?
Use Dynkin's formula with $f(x)=x^{\gamma_{1}}$ for $\gamma_{1}=1-\frac{2 r}{\alpha^{2}}$, to prove that

$$
p=\left(\frac{x}{R}\right)^{\gamma_{1}} .
$$

c) If $r>\frac{1}{2} \alpha^{2}$, then $X_{t}^{x} \rightarrow \infty$ as $t \rightarrow \infty$, a.s. Let

$$
\tau=\inf \left\{t>0: X_{t}^{x} \geq R\right\} .
$$

Use Dynkin's formula with $f(x)=\ln x, x>0$, to prove that

$$
E(\tau)=\frac{\ln \frac{R}{x}}{r-\frac{1}{2} \alpha^{2}} .
$$

Hints:

b) Note that $\gamma_{1} \in(0,1)$. Consider

$$
\tau_{\rho}=\inf \left\{t>0: X_{t}^{x} \in(\rho, R)^{c}\right\} \quad \text { and } \quad \tau_{\rho, k}=\min \left(\tau_{\rho}, k\right) .
$$

Since $r<\frac{1}{2} \alpha^{2}, X_{t}^{x} \rightarrow 0$ a.s. as $t \rightarrow \infty$ (see Example 5.1.1 in \emptyset ksendal),

$$
\tau_{\rho}<\infty \quad \text { a.s. }
$$

Use Dynkin's formula with $\tau_{\rho, k}$, send first $k \rightarrow \infty$, and then $\rho \rightarrow 0$.
You may assume that $p(\rho)=P\left(\omega: X_{\tau_{\rho}}^{x}=R\right) \rightarrow P\left(\omega: X_{\tau_{0}}^{x}=R\right)=p$.
c) Note that $\gamma_{1}<0$ and $\tau<\infty$ a.s. Consider $\tau_{\rho, k}$, send $k \rightarrow \infty$ and then $\rho \rightarrow 0$. You need estimates for

$$
(1-p(\rho)) \ln \rho,
$$

where

$$
p(\rho)=P\left(X_{t}^{x} \text { reaches the value } R \text { before } \rho\right)=P\left(X_{\tau_{\rho}}^{x}=R\right)
$$

which you can get from the calculations in a) and b).

6 We consider Brownian motion in \mathbb{R}^{n}, $B_{t}^{x}=x+B_{t}$.
a) Show that the probability of B_{t}^{x} of hitting a half space H in \mathbb{R}^{n}, starting from a point $x \notin H$, is 1 regardless of n. (Thus, we do not have the same situation as with finite size balls in \mathbb{R}^{n}).
Determine $\mathrm{E}\left(\tau_{H}^{b}\right)$ when $b \notin H$.
b) Determine a simple set in \mathbb{R}^{4} with infinite measure so that the probability of hitting the set, starting outside it, is strictly smaller than 1 .
(Hint: $B_{t}^{(4)}=\left\{B_{t}^{(3)}, B_{t}^{(1)}\right\}$).
What about an example working for \mathbb{R}^{3} ?
c) Find an open set U in \mathbb{R}^{3} with a finite volume and a hitting time τ_{U} so that $\mathrm{E}\left(\tau_{\bar{U}}^{x}\right) \leq 1$ for all $x \notin \bar{U}(\bar{U}$ denotes the closure of $U)$.

7 Øksendal Exercise 8:8.6
This problem was more difficult and less relevant than first expected. Here are detailed hints:

1. Consider a sequence of functions $f_{k} \in C_{c}^{2}$ such that

$$
\begin{gathered}
\left|f_{k}\right| \leq\|f\|_{L^{\infty}}, \quad\left|D f_{k}\right| \leq\|D f\|_{L^{\infty}}, \\
f_{k}(x) \rightarrow \tilde{f}(x):=(x-K)^{+} \quad \text { and } \quad D f_{k}(x) \rightarrow D \tilde{f}(x) \quad \text { a.e., }
\end{gathered}
$$

and go to the limit. (You can assume this sequence exists, it can be defined e.g. by mollification/convolution with a smooth kernel).
2. Assume $u(x, 0)=f_{k}(x) \in C_{c}^{2}$ and use the Feynman-Kac formula. The solution $u=u_{k}$ then satisfy the PDE.
3. Check that these solutions have similar integral form as the solution in the problem text and can be written as a convolution

$$
u_{k}(x, t)=\int F_{k}(t, y) e^{-\frac{\left(y-\beta^{-1} \ln x\right)^{2}}{4 t}} d y=\int F_{k}\left(t, y+\beta^{-1} \ln x\right) e^{-\frac{y^{2}}{4 t}} d y .
$$

4. Check that $u_{k}, \partial_{t} u_{k}, \partial_{x} u_{k}, \partial_{x}^{2} u_{k}$ converge pointwisely to $u, \partial_{t} u, \partial_{x} u, \partial_{x}^{2} u$ for $t>0$ and $x>0$ (the solution is not C^{2} at $x=0$).
Hint: Take one derivative on F and one on the Gauss kernel. When $x>0$, the integrands will be bounded functions of y, use dominated convergence.
5. Go to the limit in the PDEs for u_{k} for $t>0$ and $x>0$. Can you show that the PDE holds also at the boundary $x=0$?

8 In an uncorrelated Heston model, an improvement of the Black Scholes model in finance, the stock price S_{t} and volatility V_{t} are stochastic processes satisfying

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sqrt{V_{t}} S_{t} d B_{1, t}, \\
d V_{t} & =\alpha\left(\theta-V_{t}\right) d t+\beta \sqrt{V_{t}} d B_{2, t},
\end{aligned}
$$

where $\mu, \alpha, \theta, \beta>0$ are constants and $B=\left(B_{1}, B_{2}\right)$ is 2d B.M.
Let $\left(S_{s}^{t, x, v}, V_{t}^{t, x, v}\right)$ be the solution of the SDE with initial conditions

$$
\left(S_{t}, V_{t}\right)=(x, v)
$$

The price of an option on the stock is given by the formula

$$
u(x, v, t)=E\left(e^{-r(T-t)} f\left(S_{T}^{t, x, v}\right)\right),
$$

where f is a given function, e.g. $f(x)=(x-1)^{+}$.
What partial differential equation and terminal value problem is satisfied by u when $f \in C_{c}^{2}(\mathbb{R})$?
Hint: $s=T-t$ and you may assume the Feynman-Kac formula applies.

