1 Øksendal Exercise 7:7.1. See Solutions and additional hints to some of the exercises at the end of Øksendal.

2 Øksendal Exercise 7:7.2. See Solutions and additional hints to some of the exercises at the end of Øksendal.

3 a) Let $h(\omega)=\left(\tau_{1} \vee \tau_{2}\right)(\omega)$. Then $\{\omega: h \leq t\}=h^{-1}([0, t])=\tau_{1}^{-1}[0, t] \cup \tau_{2}^{-1}[0, t] \in$ N_{t} since N_{t} is a sigma algebra and τ_{1}, τ_{2} are stopping times wrt N_{t}.
$h(\omega)=\left(\tau_{1} \wedge \tau_{2}\right)(\omega)$ gives $h^{-1}[0, t]=\tau_{1}^{-1}[0, t] \cap \tau_{2}^{-1}[0, t] \in N_{t}$.
b) Let $h=\inf \tau_{n}=\lim \tau_{n}$. Then h is N_{t} measurable because $h^{-1}[0, t]=\bigcap_{n=1}^{\infty} \tau_{n}^{-1}[0, t]$ which is measurable because a sigma algebra is closed under countable intersection.
c) τ_{U} is a stopping time for every open set U by Øksendal Example 7.2.2. Let U_{n} be a decreasing sequence of open sets such that $F=\cap_{n} U_{n}$. Then $\tau_{U_{n}}$ is a decreasing sequence of stopping times and $\lim \tau_{U_{n}}=\tau_{F}$. Hence τ_{F} is a stopping time by part b).

4 a) We want to use Dynkin's formula to find $E\left[f\left(X_{\tau}^{x}\right)\right]$, but this requires that $f \in C_{c}^{2}$ and $E(\tau)<\infty$. The first requirement can be dealt with by replacing f by a function in C_{c}^{2} which agrees with f on (a, b). The second requirement is handled by letting $\tau_{k}=\min (\tau, k)$ for $k \in \mathbb{N}$; then $E\left(\tau_{k}\right)$ is finite and we can apply Dynkin to get

$$
\begin{aligned}
E\left[f\left(X_{\tau_{k}}^{x}\right)\right] & =f(x)+E\left[\int_{0}^{\tau_{k}} \mathcal{A} f\left(X_{s}^{x}\right) d s\right] \\
& =f(x)
\end{aligned}
$$

We can now take the limit ${ }^{1}$ to get that $E\left[f\left(X_{\tau}^{x}\right)\right]=\lim _{k \rightarrow \infty} E\left[f\left(X_{\tau_{k}}^{x}\right)\right]=f(x)$. Since

$$
E\left[f\left(X_{\tau}^{x}\right)\right]=p f(b)+(1-p) f(a)
$$

we can solve for p, to find that ${ }^{2}$

$$
\begin{equation*}
p=\frac{f(x)-f(a)}{f(b)-f(a)} \tag{1}
\end{equation*}
$$

[^0]b) The equation $\mathcal{A} f=0$ now reduces to $\frac{1}{2} f^{\prime \prime}=0$, which means that $f(s)=C s+x$ for some constant C, where x is the initial condition. Inserting this into equation (1), we find
$$
p=\frac{x-a}{b-a}
$$
c) $\mathcal{A} f=0$ in this case becomes $\mu f^{\prime}+\frac{\sigma^{2}}{2} f^{\prime \prime}=0$. The solution of this equation is given by $f(s)=C_{1} e^{-\frac{2 \mu}{\sigma^{2}} s}+C_{2}$, for some constants C_{1} and C_{2}. Inserting this into equation (1), all constants cancel out, and we get
$$
p=\frac{e^{-\frac{2 \mu}{\sigma^{2}} x}-e^{-\frac{2 \mu}{\sigma^{2}} a}}{e^{-\frac{2 \mu}{\sigma^{2}} b}-e^{-\frac{2 \mu}{\sigma^{2}} a}}
$$

5 This solution deviates somewhat from the hints in B.Ø.
a) From the Generator Theorem (Thm. 7.3.3) it follows that

$$
A=r x \frac{d}{d x}+\frac{\alpha^{2} x^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

Thus,

$$
A\left(x^{\gamma}\right)=\left(r \gamma+\frac{\alpha^{2}}{2} \gamma(\gamma-1)\right) x^{\gamma}
$$

b) Here we can not assume that all paths hit the level $R>x$. Therefore, we consider the first exit time from the interval $[\rho, R]$ for $\rho<x$, say $\tau_{\rho, R}$. Following the hint, we take $f \in C_{c}^{2}(\mathbb{R})$ such that for $x \in[\rho, R]$,

$$
f(x)=x^{\gamma_{1}} \quad \text { with } \quad \gamma_{1}=1-\frac{2 r}{\alpha^{2}}
$$

and hence by (a),

$$
A\left(x^{\gamma_{1}}\right)=\gamma_{1}\left(r+\frac{\alpha^{2}}{2}\left(\gamma_{1}-1\right)\right) x^{\gamma_{1}}=0
$$

Note that since $X_{t} \rightarrow 0$ a.s. (a fact from the problem text), it follows that $\tau_{\rho, R}<\infty$ a.s. Let $\tau_{k}=\min \left(k, \tau_{\rho, R}\right)$ (so that $\left.E\left(\tau_{k}\right) \leq k<\infty\right), k \in \mathbb{N}$, then by Dynkin,

$$
\mathrm{E}^{x}\left(f\left(X_{\tau_{k}}\right)\right) \underset{\text { Dynkin }}{=} x^{\gamma_{1}}+0
$$

where f is defined as above.
Let p_{ρ} be the probability that X_{t} hits the level R before the level ρ. Since $\tau_{k} \rightarrow \tau_{\rho, R}$ as $k \rightarrow \infty$ for all ω and f is bounded, we may use the dominated convergence theorem to show that

$$
p_{\rho} R^{\gamma_{1}}+\left(1-p_{\rho}\right) \rho^{\gamma_{1}}=E\left(f\left(X_{\tau_{\rho, R}}\right)\right)=\lim _{k \rightarrow \infty} E\left(f\left(X_{\tau_{k}}\right)\right)=x^{\gamma_{1}}
$$

or

$$
\begin{equation*}
p_{\rho}=\frac{x^{\gamma_{1}}-\rho^{\gamma_{1}}}{R^{\gamma_{1}}-\rho^{\gamma_{1}}} \tag{2}
\end{equation*}
$$

We then send $\rho \rightarrow 0$ and find that $p_{\rho} \rightarrow p$, the probability of hitting level R before $0,\left(1-p_{\rho}\right) \rho^{\gamma_{1}} \rightarrow 0$, and (hence)

$$
p=\left(\frac{x}{R}\right)^{\gamma_{1}}
$$

Remark: An alternative proof is given in an appendix after part c). Here the k-approximation is avoided at the cost of a long direct computation to show that $E\left(\tau_{\rho, R}\right)<\infty$.
c) Since $X_{t} \rightarrow \infty$ a.s. it follows that $\tau<\infty$ a.s. Let $\tau_{\rho, R}$ and τ_{k} be as in part b), and take $f \in C_{0}^{2}$ such that

$$
f(x)=\ln x \quad \text { in } \quad[\rho, R]
$$

Here we have introduced $\tau_{\rho, R}$ to avoid $x=0$ where the log is not continuous which precludes the use of Dynkin's formula.
Now since

$$
A(\ln x)=r x \frac{d \ln x}{d x}+\frac{\alpha^{2} x^{2}}{2} \frac{d^{2} \ln x}{d x^{2}}=r-\frac{\alpha^{2}}{2}(>0)
$$

we use Dynkin's formula and find that

$$
\begin{aligned}
\mathrm{E}\left(f\left(X_{\tau_{k}}^{x}\right)\right) & =\ln x+\mathrm{E}\left(\int_{0}^{\tau_{k}}\left(r-\frac{\alpha^{2}}{2}\right) d t\right) \\
& =\ln x+\left(r-\frac{\alpha^{2}}{2}\right) \mathrm{E} \tau_{k}
\end{aligned}
$$

We let p_{ρ} be as in b), the probability that the process hits $x=R$ before $x=\rho$, and send $k \rightarrow \infty$ using the dominated convergence theorem (f is bounded):

$$
\begin{aligned}
\left(1-p_{\rho}\right) \ln \rho+p_{\rho} \ln R & =\mathrm{E}\left(f\left(X_{\tau_{\rho, R}}^{x}\right)\right) \\
& =\lim _{k \rightarrow \infty} \mathrm{E}\left(f\left(X_{\tau_{k}}^{x}\right)\right)=\ln x+\left(r-\frac{\alpha^{2}}{2}\right) \mathrm{E} \tau_{\rho, R}
\end{aligned}
$$

or

$$
\mathrm{E} \tau_{\rho, R}=\frac{\left(1-p_{\rho}\right) \ln \rho+p_{\rho} \ln R-\ln x}{r-\frac{\alpha^{2}}{2}}
$$

Note that now $\gamma_{1}<0$ by assumption, so by (2) in part b),

$$
p_{\rho}=\frac{x^{\gamma_{1}}-\rho^{\gamma_{1}}}{R^{\gamma_{1}}-\rho^{\gamma_{1}}} \rightarrow 1 \quad \text { and } \quad\left(1-p_{\rho}\right) \ln \rho \rightarrow 0
$$

as $\rho \rightarrow 0$. Since $\tau_{\rho, R}$ is an increasing sequence converging to τ as $\rho \rightarrow 0$, we can use the monotone convergence theorem to conclude that

$$
E(\tau)=\lim _{\rho \rightarrow 0} E\left(\tau_{\rho, R}\right)=\frac{\ln R-\ln x}{r-\frac{\alpha^{2}}{2}}
$$

The proof is complete.

Appendix: Alternative solution of b). We claim that $\mathrm{E}\left(\tau_{\rho, R}\right)<\infty$, and apply Dynkin's Formula with this stopping time:

$$
p_{\rho} R^{\gamma_{1}}+\left(1-p_{\rho}\right) \rho^{\gamma_{1}}=\mathrm{E}^{x}\left(f\left(X_{\tau_{\rho, R}}\right)\right) \underset{\text { Dynkin }}{=} x^{\gamma_{1}}+0
$$

We let $\rho \rightarrow 0$ and find that $p_{\rho} \rightarrow p$, the probability of hitting level R before 0 , $\left(1-p_{\rho}\right) \rho^{\gamma_{1}} \rightarrow 0$, and

$$
p=\left(\frac{x}{R}\right)^{\gamma_{1}}
$$

Let us prove the claim above. Note first that geometrical Brownian motion (Example 5.1.1) is given by

$$
X_{t}=x \exp \left[\left(r-\frac{\alpha^{2}}{2}\right) t+\alpha B_{t}\right]
$$

Remember that $r-\frac{\alpha^{2}}{2}<0$, and let τ_{ρ} be the first time X_{t} hits the level ρ. We will show that $\mathrm{E}\left(\tau_{\rho}\right)<\infty$. Then we are done since $\tau_{\rho, R} \leq \tau_{\rho}$ and hence

$$
E\left(\tau_{\rho, R}\right) \leq E\left(\tau_{\rho}\right)<\infty
$$

Consider

$$
\begin{aligned}
P\left(\omega ; \tau_{\rho} \geq t_{0}\right) & \leq P\left(X_{t_{0}} \geq \rho\right) \\
& =P\left(\left(r-\frac{\alpha^{2}}{2}\right) t_{0}+\alpha B_{t_{0}} \geq \log (\rho / x)\right) \\
& =P\left(B_{t_{0}} \geq \frac{\log (\rho / x)-\left(r-\frac{\alpha^{2}}{2}\right) t_{0}}{\alpha}\right)
\end{aligned}
$$

By Lemma 2 in the note on Brownian motion, if X is $\mathcal{N}(0,1)$, then

$$
P(X \geq x)=1-\Phi(x) \leq \sqrt{\frac{1}{2 \pi}} \frac{1}{x} e^{-x^{2} / 2}
$$

Hence,

$$
\begin{aligned}
P\left(B_{t_{0}} \geq A+C t_{0}\right) & =1-\Phi\left(\frac{A+C t_{0}}{t_{0}^{1 / 2}}\right) \\
& \leq \frac{1}{\sqrt{2 \pi}} \frac{t_{0}^{1 / 2}}{A+C t_{0}} \exp \left[-\frac{1}{2}\left(\frac{A+C t_{0}}{t_{0}^{1 / 2}}\right)^{2}\right]
\end{aligned}
$$

and

$$
E\left(\tau_{\rho}\right) \leq \sum_{k=1}^{\infty} k P\left(k-1 \leq \tau_{\rho} \leq k\right) \leq \sum_{k=1}^{\infty} k P\left(k-1 \leq \tau_{\rho}\right)<\infty
$$

NB! The same conclusion holds for a level above x in the case where $r-\frac{\alpha^{2}}{2}>0$.

6 We consider Brownian motion in \mathbb{R}^{n}.
These exercises are best solved by making simple sketches.

Figure 1: Two ways of proving that the probability of hitting a halfplane is always 1: (A) is to use the corresponding result for 1D Brownian motion. (B) is to use the result for the spere and letting $R \rightarrow \infty$ while b is constant.
a) There are several ways of seeing this, two methods are indicated in Fig. 1.

In (A) we have put the x-axis through the starting point $(\mathbf{x}=0)$ and orthogonal to (hyper)plane $\left\{x_{1} \geq b\right\}, b>0$. Hitting the half-space is the same as hitting $x_{1}=b$ for the first component of the B.M. We know from 1d B.M. that the probability of hitting is 1 , but the expected hitting time $\mathrm{i} \infty$. That is, $\mathrm{E}^{b}\left(\tau_{H}\right)=$ ∞.
For (B), the probability of hitting the half space is clearly larger than hitting the a smaller sphere within the half space. For $n=1$ and $n=2$, the probability of hitting any sphere is 1 . For $n \geq 3$, we already know that

$$
\mathrm{P}(\text { Hitting half-space }) \geq \mathrm{P}(\text { Hitting sphere })=\frac{R^{n-2}}{(R+b)^{n-2}} \underset{R \rightarrow \infty}{\longrightarrow} 1
$$

Apparently not so easy to see that $\mathrm{E}^{b}\left(\tau_{H}\right)=\infty$ in this argument (?).
b) The simplest example is probably the 4 d cylinder

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1, x_{4} \in \mathbb{R}\right\}
$$

The probability of the 4 d B.M. of hitting C from the outside is equal to the probability of the 3 d B.M. of hitting the unit ball from the outside.
Let $U=\cup_{k \in \mathbb{N}} B()$ An example for \mathbb{R}^{3} can be found is left open for discussion!
c) Many constructions should be possible. One idea is to think of a stack of cubed boxes set side by side so that starting inside any box, $\mathrm{E}^{x}\left(\tau_{U}\right) \leq 1$. All of \mathbb{R}^{3} can be covered by such boxes and the walls of the boxes can be made gradually thinner (smaller volume) so that the total volume is finite. Take the set U to be the points belonging to the walls in this construction.
If a closed set U was sought, one could take the boundary of any sufficiently fine regular triangulation of \mathbb{R}^{n}.

7 The generator is

$$
\begin{equation*}
A u(x)=\alpha x \frac{\partial u}{\partial x}+\frac{1}{2} \beta^{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

and the problem is of a form where the Feynman-Kac formula applies (Theorem 8.2 .1 in Øksendal), except for the fact that $f(x)$ do not have compact support and is not differentiable at $x=K$.
Take a family $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ of non-negative $C_{c}^{2}(\mathbb{R})$-functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=$ $f(x)$. By the Feynman-Kac formula,

$$
\begin{equation*}
u_{n}(x, t)=E\left[e^{-\rho t} f_{n}\left(X_{t}^{x}\right)\right] \tag{4}
\end{equation*}
$$

satisfy

$$
\begin{align*}
\frac{\partial u_{n}}{\partial t} & =A u_{n}(x)-\rho u_{n} ; \quad t>0, \quad x \in \mathbb{R} \tag{5a}\\
u_{n}(0, x) & =f_{n}(x) ; \quad x \in \mathbb{R} \tag{5b}
\end{align*}
$$

The generator A is the generator of the geometrical Brownian motion

$$
\begin{equation*}
d X_{t}=\alpha X_{t} d t+\beta X_{t} d B_{t} \tag{6}
\end{equation*}
$$

with solution

$$
\begin{equation*}
X_{t}=x \exp \left\{\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\beta B_{t}\right\} \tag{7}
\end{equation*}
$$

Since the Brownian motion is Gaussian with zero mean and variance t, the solution to the p.d.e. can be written as

$$
\begin{equation*}
u_{n}(x, t)=\frac{e^{-\rho t}}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f_{n}\left(x \exp \left\{\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\beta y\right\}\right) e^{-\frac{1}{2 t} y^{2}} d y \tag{8}
\end{equation*}
$$

Taking the limit, and using the dominated convergence theorem,
(9) $u(x, t)=\lim _{n \rightarrow \infty} u_{n}(x, t)=\frac{e^{-\rho t}}{\sqrt{2 \pi t}} \int_{\mathbb{R}}\left(x \exp \left\{\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\beta y\right\}-K\right)^{+} e^{-\frac{1}{2 t} y^{2}} d y$.

This is a candidate for a solution of the Black-Scholes equation. We must verify that it is the solution. This step is omitted, see the hints for how to do it.

Note: This formula can be simplified. Since the support of the integrand is

$$
y>\frac{1}{2} \beta t-\frac{1}{\beta}\left(\ln \frac{x}{K}+\alpha t\right):=\gamma
$$

we may split the integral in two and complete the square to find that

$$
\begin{aligned}
u(x, t) & =\frac{e^{-\rho t}}{\sqrt{2 \pi t}} \int_{\gamma}^{\infty}\left(x \exp \left\{\left(\alpha-\frac{1}{2} \beta^{2}\right) t+\beta y\right\}-K\right) e^{-\frac{1}{2 t} y^{2}} d y \\
& =x e^{(\alpha-\rho) t} \Phi\left(\phi^{+}\right)-K e^{-\rho t} \Phi\left(\phi^{-}\right)
\end{aligned}
$$

where $\phi^{ \pm}=\frac{1}{\beta \sqrt{t}}\left(\ln \frac{x}{K}+\alpha t\right) \pm \frac{1}{2} \beta \sqrt{t}$ and

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} y^{2}} d y \tag{10}
\end{equation*}
$$

8 First we rewrite the stochastic differential equations in the vector form:

$$
\binom{d S_{t}}{d V_{t}}=\binom{\mu S_{t}}{\alpha\left(\theta-V_{t}\right)} d t+\left(\begin{array}{cc}
\sqrt{V_{t}} S_{t} & 0 \\
0 & \beta \sqrt{V_{t}}
\end{array}\right)\binom{d B_{1, t}}{d B_{2, t}},
$$

and note that the generator takes the form

$$
\begin{equation*}
A=\mu s \frac{\partial}{\partial s}+\alpha(\theta-v) \frac{\partial}{\partial v}+\frac{1}{2}\left(s^{2} v \frac{\partial^{2}}{\partial s^{2}}+\beta^{2} v \frac{\partial^{2}}{\partial v^{2}}\right) . \tag{11}
\end{equation*}
$$

Under the assumption that $f \in C_{c}^{2}(\mathbb{R})$ and that the interest rate $q\left(S_{t}, V_{t}\right) \equiv r$ is constant, we may apply the Feynmann-Kac formula and conclude that

$$
w(x, v, t)=E\left(e^{-r t} f\left(S_{t}^{0, x, v}\right)\right)
$$

satisfies the initial value problem

$$
\left\{\begin{array}{l}
\frac{\partial w}{\partial t}=A w-r w, \quad t \in(0, T] \tag{12}\\
w(x, v, 0)=f(x) .
\end{array}\right.
$$

Then we use the fact that the stochastic differential equation is time-homogeneous to find that the option price in the Heston model

$$
\begin{aligned}
u(x, v, t) & :=E\left(e^{-r(T-t)} f\left(S_{T}^{t, x, v}\right)\right) \\
& =E\left(e^{-r(T-t)} f\left(S_{T-t}^{0, x, v}\right)\right) \\
& =w(x, v, T-t) .
\end{aligned}
$$

Then $\frac{\partial u}{\partial t}=-\frac{\partial w}{\partial t}$ and the derivatives of u and w with respect to s and v coinside. Hence by (12), it follows that

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=-A u+r u, \quad t \in[0, T) \\
u(x, v, T)=f(x),
\end{array}\right.
$$

where the differential operator A is given in (11) above.

[^0]: ${ }^{1}$ The technical details: use the dominated convergence theorem to pull the limit inside the expectation, and the continuity of f together with the t-continuity of X_{t} to get from τ_{k} to τ.
 ${ }^{2}$ At least assuming that we have a solution f with $f(b)-f(a) \neq 0$.

